Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Biol ; 84: e264473, 2022.
Article in English | MEDLINE | ID: mdl-36169410

ABSTRACT

The present study was carried out in Hayat Abad Industrial Estate located in Peshawar to assess the levels of cadmium (Cd) that were present in the soil as well as the plant parts (Roots and shoots). To evaluate the phytoremediation potential of the plants different factors i.e. Bioconcentration Factor (BCF), Translocation Factor (TF), and Bioaccumulation Coefficient were determined. These plants were grown in their native habitats (BAC). We have analysed, cadmium concentration from soil which are collected from 50 different locations ranged from 11.54 mg/Kg (the lowest) to 89.80 mg/Kg (highest). The maximum concentration (89.80 mg/Kg) of cadmium was found in HIE-ST-16L Marble City and HIE-ST-7 Bryon Pharma (88.51 mg/Kg) while its minimum concentration (12.47 mg/Kg) were detected in the soil of Site (HIE-ST-14L Royal PVC Pipe) and (11.54 mg/Kg) at the site (HIE-ST-11 Aries Pharma). Most plant species showed huge potential for plant based approaches like phyto-extraction and phytoremediation. They also showed the potential for phyto-stabilization as well. Based on the concentration of cadmium the most efficient plants for phytoextraction were Cnicus benedictus, Parthenium hysterophorus, Verbesina encelioides, Conyza canadensis, Xanthium strumarium, Chenopodium album, Amaranthus viridis, Chenopodiastrum murale, Prosopis juliflora, Convolvulus arvensis, Stellaria media, Arenaria serpyllifolia, Cerastium dichotomum, Chrozophora tinctoria, Mirabilis jalapa, Medicago polymorpha, Lathyrus aphaca, Dalbergia sissoo, Melilotus indicus and Anagallis arvensis. The cadmium heavy metals in the examined soil were effectively removed by these plant species. Cerastium dichotomum, and Chenopodium murale were reported to be effective in phyto-stabilizing Cd based on concentrations of selected metals in roots and BCFs, TFs, and BACs values.


Subject(s)
Metals, Heavy , Mirabilis , Soil Pollutants , Biodegradation, Environmental , Cadmium , Calcium Carbonate , Metals, Heavy/analysis , Plant Roots/chemistry , Plants , Polyvinyl Chloride , Soil , Soil Pollutants/analysis
2.
Sci Rep ; 9(1): 3756, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842557

ABSTRACT

Microbial L-asparaginase (ASNase) is an important anticancer agent that is used extensively worldwide. In this study, 40 bacterial isolates were obtained from the Red Sea of Saudi Arabia and screened for ASNase production using a qualitative rapid plate assay, 28 of which were producing large L-asparagine hydrolysis zones. The ASNase production of the immobilized bacterial cells was more favorable than that of freely suspended cells. A promising isolate, KKU-KH14, was identified by 16S rRNA gene sequencing as Bacillus licheniformis. Maximal ASNase production was achieved using an incubation period of 72 h, with an optimum of pH 6.5, an incubation temperature of 37 °C, an agitation rate 250 rpm, and with glucose and (NH4)2SO4 used as the carbon and nitrogen sources, respectively. The glutaminase activity was not detected in the ASNase preparations. The purified ASNase showed a final specific activity of 36.08 U/mg, and the molecular weight was found to be 37 kDa by SDS-PAGE analysis. The maximum activity and stability of the purified enzyme occurred at pH values of 7.5 and 8.5, respectively, with maximum activity at 37 °C and complete thermal stability at 70 °C for 1 h. The Km and Vmax values of the purified enzyme were 0.049995 M and of 45.45 µmol/ml/min, respectively. The anticancer activity of the purified ASNase showed significant toxic activity toward HepG-2 cells (IC50 11.66 µg/mL), which was greater than that observed against MCF-7 (IC50 14.55 µg/mL) and HCT-116 cells (IC50 17.02 µg/mL). The results demonstrated that the Red Sea is a promising biological reservoir, as shown by the isolation of B. licheniformis, which produces a glutaminase free ASNase and may be a potential candidate for further pharmaceutical use as an anticancer drug.


Subject(s)
Antineoplastic Agents/pharmacology , Asparaginase/metabolism , Asparaginase/pharmacology , Bacillus licheniformis/isolation & purification , Sequence Analysis, DNA/methods , Antineoplastic Agents/metabolism , Bacillus licheniformis/classification , Bacillus licheniformis/enzymology , Bacillus licheniformis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA, Ribosomal/genetics , HCT116 Cells , Hep G2 Cells , Humans , Indian Ocean , MCF-7 Cells , RNA, Ribosomal, 16S/genetics , Saudi Arabia , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...