Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38902926

ABSTRACT

The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.

2.
Neurotoxicology ; 89: 67-78, 2022 03.
Article in English | MEDLINE | ID: mdl-35041872

ABSTRACT

Bisphenol A (BPA) is an environmentally prevalent endocrine disrupting chemical that can impact human health and may be an environmental risk factor for neurodevelopmental disorders. BPA has been associated with behavioral impairment in children and a variety of neurodevelopmental phenotypes in model organisms. We used Drosophila melanogaster to explore the consequences of developmental BPA exposure on gene expression, cognitive function, and synapse development. Our transcriptome analysis indicated neurodevelopmentally relevant genes were predominantly downregulated by BPA. Among the misregulated genes were those with roles in learning, memory, and synapse development, as well as orthologs of human genes associated with neurodevelopmental and neuropsychiatric disorders. To examine how gene expression data corresponded to behavioral and cellular phenotypes, we first used a predator-response behavioral paradigm and found that BPA disrupts visual perception. Further analysis using conditioned courtship suppression showed that BPA impairs associative learning. Finally, we examined synapse morphology within the larval neuromuscular junction and found that BPA significantly increased the number of axonal branches. Given that our findings align with studies of BPA in mammalian model organisms, this data indicates that BPA impairs neurodevelopmental pathways that are functionally conserved from invertebrates to mammals. Further, because Drosophila do not possess classic estrogen receptors or estrogen, this research suggests that BPA can impact neurodevelopment by molecular mechanisms distinct from its role as an estrogen mimic.


Subject(s)
Drosophila melanogaster , Endocrine Disruptors , Animals , Benzhydryl Compounds/toxicity , Cognition , Drosophila melanogaster/genetics , Gene Expression , Mammals , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...