Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 6(6): e04024, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32577544

ABSTRACT

Carbonaceous materials analyzed in this investigation were six nanometric particle size carbon blacks. Carbons were texturally characterized by gas adsorption (N2, 77 K), helium and mercury density and mercury porosimetry measurements. Electrical conductivity was determinated by impedance spectroscopy, at room temperature. Several works related to the electrical conductivity and to textural parameters of carbon blacks, such as: porosity, specific surface area, etc., have been carried out. However, there are a type of parameters, such as the fractal dimension, the percentage of macropores, the particle size, or the packing density, that are also related to the electrical conductivity, but they have not been previously investigated. In this work, it has been researched how the increase in interparticle/intraparticle porosity decreases the electrical conductivity of the samples studied. Therefore, it is possible to conclude that in this study a complete research work on electrical conductivity has been carried out.

2.
J Hazard Mater ; 328: 46-55, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28081454

ABSTRACT

The aim of this work is to modify the porous texture and superficial groups of a commercial activated carbon through chemical and thermal treatment and subsequently study the kinetics of adsorption and electroadsorption of Cu (II) ion for these carbons. Samples of three activated carbons were used. These were a commercial activated carbon, commercial activated carbon modified thermically (C-N2-900) and finally commercial activated carbon modified chemically C-SO2-H2S-200. The activated carbons were characterized chemically and texturally and the electrical conductivity of them determined. Different kinetic models were applied. The kinetics of the adsorption and electroadsorption process of the Cu (II) ion fits a pseudo second order model and the most likely mechanism takes place in two stages. A first step through transfer of the metal mass through the boundary layer of the adsorbent and distribution of the Cu (II) on the external surface of the activated carbon and a second step that represents intraparticle diffusion and joining of the Cu (II) with the active centres of the activated carbon. Finally, the kinetics of the adsorption process are faster than the kinetics of the electroadsorption but the percentage of the Cu (II) ion retained is much higher in the electroadsorption process.

SELECTION OF CITATIONS
SEARCH DETAIL