Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 2245, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854067

ABSTRACT

Breast cancer is a heterogeneous pathology, but the genomic basis of its variability remains poorly understood in populations other than Caucasians. Here, through DNA and RNA portraits we explored the molecular features of breast cancers in a set of Hispanic-Mexican (HM) women and compared them to public multi-ancestry datasets. HM patients present an earlier onset of the disease, particularly in aggressive clinical subtypes, compared to non-Hispanic women. The age-related COSMIC signature 1 was more frequent in HM women than in those from other ancestries. We found the AKT1E17K hotspot mutation in 8% of the HM women and identify the AKT1/PIK3CA axis as a potentially druggable target. Also, HM luminal breast tumors present an enhanced immunogenic phenotype compared to Asiatic and Caucasian tumors. This study is an initial effort to include patients from Hispanic populations in the research of breast cancer etiology and biology to further understand breast cancer disparities.


Subject(s)
Breast Neoplasms/ethnology , Breast Neoplasms/etiology , Hispanic or Latino/genetics , Mexican Americans/genetics , Adult , Aged , Breast Neoplasms/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Humans , Middle Aged , Mutation , Proto-Oncogene Proteins c-akt/genetics , Exome Sequencing
2.
Front Oncol ; 11: 628027, 2021.
Article in English | MEDLINE | ID: mdl-33912452

ABSTRACT

Breast cancer (BRCA) is a serious public health problem, as it is the most frequent malignant tumor in women worldwide. BRCA is a molecularly heterogeneous disease, particularly at gene expression (mRNAs) level. Recent evidence shows that coding RNAs represent only 34% of the total transcriptome in a human cell. The rest of the 66% of RNAs are non-coding, so we might be missing relevant biological, clinical or regulatory information. In this report, we identified two novel tumor types from TCGA with LINC00460 deregulation. We used survival analysis to demonstrate that LINC00460 expression is a marker for poor overall (OS), relapse-free (RFS) and distant metastasis-free survival (DMFS) in basal-like BRCA patients. LINC00460 expression is a potential marker for aggressive phenotypes in distinct tumors, including HPV-negative HNSC, stage IV KIRC, locally advanced lung cancer and basal-like BRCA. We show that the LINC00460 prognostic expression effect is tissue-specific, since its upregulation can predict poor OS in some tumors, but also predicts an improved clinical course in BRCA patients. We found that the LINC00460 expression is significantly enriched in the Basal-like 2 (BL2) TNBC subtype and potentially regulates the WNT differentiation pathway. LINC00460 can also modulate a plethora of immunogenic related genes in BRCA, such as SFRP5, FOSL1, IFNK, CSF2, DUSP7 and IL1A and interacts with miR-103-a-1, in-silico, which, in turn, can no longer target WNT7A. Finally, LINC00460:WNT7A ratio constitutes a composite marker for decreased OS and DMFS in Basal-like BRCA, and can predict anthracycline therapy response in ER-BRCA patients. This evidence confirms that LINC00460 is a master regulator in BRCA molecular circuits and influences clinical outcome.

3.
Front Oncol ; 10: 572954, 2020.
Article in English | MEDLINE | ID: mdl-33194675

ABSTRACT

Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.

4.
Sci Rep ; 10(1): 14145, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839509

ABSTRACT

Breast cancer (BRCA) is a serious public health problem, as it is the most frequent malignant tumor in women worldwide. BRCA is a molecularly heterogenic disease, particularly at gene expression (mRNAs) level. Recent evidence shows that coding RNAs represent only 34% of the total transcriptome in a human cell. The rest of the 66% of RNAs are non-coding, so we might be missing relevant biological, clinical or regulatory information. In this report, we identified nine novel tumor types from TCGA with FAM83H-AS1 deregulation. We used survival analysis to demonstrate that FAM83H-AS1 expression is a marker for poor survival in IHC-detected ER and PR positive BRCA patients and found a significant correlation between FAM83H-AS1 overexpression and tamoxifen resistance. Estrogen and Progesterone receptor expression levels interact with FAM83H-AS1 to potentiate its effect in OS prediction. FAM83H-AS1 silencing impairs two important breast cancer related pathways: cell migration and cell death. Among the most relevant potential FAM83H-AS1 gene targets, we found p63 and claudin 1 (CLDN1) to be deregulated after FAM83H-AS1 knockdown. Using correlation analysis, we show that FAM83H-AS1 can regulate a plethora of cancer-related genes across multiple tumor types, including BRCA. This evidence suggests that FAM83H-AS1 is a master regulator in different cancer types, and BRCA in particular.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/therapy , Gene Expression Regulation, Neoplastic/genetics , Proteins/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Cell Movement/genetics , Claudin-1/genetics , Drug Resistance, Neoplasm/genetics , Female , Humans , Middle Aged , Prognosis , Proteins/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Survival Analysis , Tamoxifen/therapeutic use , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Young Adult
5.
Sci Rep ; 10(1): 13146, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753692

ABSTRACT

Breast cancer is the most commonly diagnosed neoplasm in women worldwide with a well-recognized heterogeneous pathology, classified into four molecular subtypes: Luminal A, Luminal B, HER2-enriched and Basal-like, each one with different biological and clinical characteristics. Long non-coding RNAs (lncRNAs) represent 33% of the human transcriptome and play critical roles in breast carcinogenesis, but most of their functions are still unknown. Therefore, cancer research could benefit from continued exploration into the biology of lncRNAs in this neoplasm. We characterized lncRNA expression portraits in 74 breast tumors belonging to the four molecular subtypes using transcriptome microarrays. To infer the biological role of the deregulated lncRNAs in the molecular subtypes, we performed co-expression analysis of lncRNA-mRNA and gene ontology analysis. We identified 307 deregulated lncRNAs in tumor compared to normal tissue and 354 deregulated lncRNAs among the different molecular subtypes. Through co-expression analysis between lncRNAs and protein-coding genes, along with gene enrichment analysis, we inferred the potential function of the most deregulated lncRNAs in each molecular subtype, and independently validated our results taking advantage of TCGA data. Overexpression of the AC009283.1 was observed in the HER2-enriched subtype and it is localized in an amplification zone at chromosome 17q12, suggesting it to be a potential tumorigenic lncRNA. The functional role of lncRNA AC009283.1 was examined through loss of function assays in vitro and determining its impact on global gene expression. These studies revealed that AC009283.1 regulates genes involved in proliferation, cell cycle and apoptosis in a HER2 cellular model. We further confirmed these findings through ssGSEA and CEMITool analysis in an independent HER2-amplified breast cancer cohort. Our findings suggest a wide range of biological functions for lncRNAs in each breast cancer molecular subtype and provide a basis for their biological and functional study, as was conducted for AC009283.1, showing it to be a potential regulator of proliferation and apoptosis in the HER2-enriched subtype.


Subject(s)
Apoptosis , Breast Neoplasms/metabolism , Cell Proliferation , Chromosomes, Human, Pair 17 , RNA, Long Noncoding/biosynthesis , Receptor, ErbB-2/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 17/metabolism , Female , Humans , MCF-7 Cells , RNA, Long Noncoding/genetics , Receptor, ErbB-2/genetics
6.
Sci Rep ; 9(1): 13620, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541186

ABSTRACT

The Human Papillomavirus (HPV) E1 protein is the only viral protein with enzymatic activity. The main known function of this protein is the regulation of the viral DNA replication. Nevertheless, it has been demonstrated that the ablation of HPV18 E1 mRNA in HeLa cells promotes a deregulation of several genes, particularly those involved in host defense mechanisms against viral infections; however, the specific contribution of E1 protein in HPV-independent context has not been studied. The aim of this work was to determine the effect of the HPV E1 protein in the regulation of cellular gene expression profiles evaluated through RNA-seq. We found that E1 proteins from HPV16 and 18 induced an overexpression of different set of genes associated with proliferation and differentiation processes, as well as downregulation of immune response genes, including IFNß1 and IFNλ1 and Interferon-stimulated gene (ISG), which are important components involved in the antiviral immune response. Together, our results indicate that HR-(High-Risk) and LR-(Low-Risk) HPV E1 proteins play an important role in inhibiting the anti-viral immune response.


Subject(s)
Oncogene Proteins, Viral/metabolism , Papillomaviridae/genetics , Cell Differentiation/genetics , Cell Line, Tumor , DNA Replication/genetics , DNA, Viral/genetics , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , HeLa Cells , Host-Pathogen Interactions , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Humans , Oncogene Proteins, Viral/genetics , Papillomaviridae/immunology , Papillomavirus Infections/genetics , Viral Proteins/genetics , Virus Replication/genetics
7.
BMC Genet ; 20(1): 5, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30621578

ABSTRACT

BACKGROUND: Association studies are useful to unravel the genetic basis of common human diseases. However, the presence of undetected population structure can lead to both false positive results and failures to detect genuine associations. Even when most of the approaches to deal with population stratification require genome-wide data, the use of a well-selected panel of ancestry informative markers (AIMs) may appropriately correct for population stratification. Few panels of AIMs have been developed for Latino populations and most contain a high number of markers (> 100 AIMs). For some association studies such as candidate gene approaches, it may be unfeasible to genotype a numerous set of markers to avoid false positive results. In such cases, methods that use fewer AIMs may be appropriate. RESULTS: We validated an accurate and cost-effective panel of AIMs, for use in population stratification correction of association studies and global ancestry estimation in Mexicans, as well as in populations having large proportions of both European and Native American ancestries. Based on genome-wide data from 1953 Mexican individuals, we performed a PCA and SNP weights were calculated to select subsets of unlinked AIMs within percentiles 0.10 and 0.90, ensuring that all chromosomes were represented. Correlations between PC1 calculated using genome-wide data versus each subset of AIMs (16, 32, 48 and 64) were r2 = 0.923, 0.959, 0.972 and 0.978, respectively. When evaluating PCs performance as population stratification adjustment covariates, no correlation was found between P values obtained from uncorrected and genome-wide corrected association analyses (r2 = 0.141), highlighting that population stratification correction is compulsory for association analyses in admixed populations. In contrast, high correlations were found when adjusting for both PC1 and PC2 for either subset of AIMs (r2 > 0.900). After multiple validations, including an independent sample, we selected a minimal panel of 32 AIMs, which are highly informative of the major ancestral components of Mexican mestizos, namely European and Native American ancestries. Finally, the correlation between the global ancestry proportions calculated using genome-wide data and our panel of 32 AIMs was r2 = 0.972. CONCLUSIONS: Our panel of 32 AIMs accurately estimated global ancestry and corrected for population stratification in association studies in Mexican individuals.


Subject(s)
Genetics, Population , Population Groups/genetics , White People/genetics , Cost-Benefit Analysis , Genetics, Population/economics , Genome-Wide Association Study , Humans , Mexico/ethnology , Polymorphism, Single Nucleotide
8.
Cancer Med ; 6(12): 2942-2956, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29030909

ABSTRACT

In this study, we determined the gene expression profiles of bone marrow-derived cell fractions, obtained from normal subjects and Chronic Myeloid Leukemia (CML) patients, that were highly enriched for hematopoietic stem (HSCs) and progenitor (HPCs) cells. Our results indicate that the profiles of CML HSCs and HPCs were closer to that of normal progenitors, whereas normal HSCs showed the most different expression profile of all. We found that the expression profiles of HSCs and HPCs from CML marrow were closer to each other than those of HSCs and HPCs from normal marrow. The major biologic processes dysregulated in CML cells included DNA repair, cell cycle, chromosome condensation, cell adhesion, and the immune response. We also determined the genomic changes in both normal and CML progenitor cells under culture conditions, and found that several genes involved in cell cycle, steroid biosynthesis, and chromosome segregation were upregulated, whereas genes involved in transcription regulation and apoptosis were downregulated. Interestingly, these changes were the same, regardless of the addition of Imatinib (IM) to the culture. Finally, we identified three genes-PIEZO2, RXFP1, and MAMDC2- that are preferentially expressed by CML primitive cells and that encode for cell membrane proteins; thus, they could be used as biomarkers for CML stem cells.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Hematopoietic Stem Cells/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Biomarkers, Tumor/metabolism , Case-Control Studies , Computational Biology , Databases, Genetic , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Ion Channels/genetics , Ion Channels/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Transcriptome , Tumor Cells, Cultured
9.
PLoS One ; 12(7): e0180419, 2017.
Article in English | MEDLINE | ID: mdl-28692701

ABSTRACT

Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009) virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Seasons , Amino Acid Substitution/genetics , Antigens, Viral/immunology , Demography , Female , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Likelihood Functions , Male , Mexico/epidemiology , Middle Aged , Phylogeny , Prevalence , Sequence Analysis, DNA
10.
Hypertension ; 59(4): 847-53, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22371359

ABSTRACT

The angiotensinogen gene locus has been associated with essential hypertension in most populations analyzed to date. Increased plasma angiotensinogen levels have been proposed as an underlying cause of essential hypertension in whites; however, differences in the genetic regulation of plasma angiotensinogen levels have also been reported for other populations. The aim of this study was to analyze the relationship between angiotensinogen gene polymorphisms and haplotypes with plasma angiotensinogen levels and the risk of essential hypertension in the Mexican population. We genotyped 9 angiotensinogen gene polymorphisms in 706 individuals. Four polymorphisms, A-6, C4072, C6309, and G12775, were associated with increased risk, and the strongest association was found for the C6309 allele (χ(2)=23.9; P=0.0000009), which resulted in an odds ratio of 3.0 (95% CI: 1.8-4.9; P=0.000006) in the recessive model. Two polymorphisms, A-20C (P=0.003) and C3389T (P=0.0001), were associated with increased plasma angiotensinogen levels but did not show association with essential hypertension. The haplotypes H1 (χ(2)=8.1; P=0.004) and H5 (χ(2)=5.1; P=0.02) were associated with essential hypertension. Using phylogenetic analysis, we found that haplotypes 1 and 5 are the human ancestral haplotypes. Our results suggest that the positive association between angiotensinogen gene polymorphisms and haplotypes with essential hypertension is not simply explained by an increase in plasma angiotensinogen concentration. Complex interactions between risk alleles suggest that these haplotypes act as "superalleles."


Subject(s)
American Indian or Alaska Native/genetics , Angiotensinogen/genetics , Genotype , Haplotypes/genetics , Hypertension/ethnology , Hypertension/genetics , Phenotype , Aged , Aged, 80 and over , Alleles , American Indian or Alaska Native/ethnology , Angiotensinogen/blood , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Humans , Hypertension/blood , Male , Mexico , Phylogeny , Polymorphism, Single Nucleotide/genetics , Risk Factors
11.
Am J Med Sci ; 342(3): 205-11, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21629041

ABSTRACT

INTRODUCTION: The plasmatic angiotensinogen (AGT) level has been associated with essential hypertension. Linkage analysis has found a relationship between the AGT gene locus and hypertension in the Mexican-American population, but studies have failed to identify genetic variants associated with hypertension or plasma AGT levels. This study analyzes the relationship between polymorphisms in the AGT gene and plasmatic AGT levels in Mexican population. METHODS: Nine polymorphisms in AGT gene were genotyped, and plasma AGT level was determined by enzyme-linked immunosorbent assay. RESULTS: Differences in AGT plasma levels were associated with 2 polymorphisms: T-20G, TT = 25.3 ± 8.3 versus TG + GG = 21.6 ± 8.8 µg/mL; P = 0.008 and C3389T (T174M), CC = 25.8 ± 9.9 versus TC + TT = 20.5 ± 5.4 µg/mL; P = 0.0002. Haplotype 2 was associated with low plasma AGT (-5.1 µg/mL [95% confidence interval: -8.6 to -1.6], P = 0.004) and Haplotype 8 was associated with high plasma AGT (6.5 µg/mL [95% confidence interval: 2.5 to 10.6], P = 0.001). This association remained after adjustment for covariates. A Likelihood Ratio Test for haplotype-phenotype association adjusted for covariates resulted in χ = 38.9, P = 0.0005. The total effect of the haplotypes on plasma AGT level variance was 19.5%. No association was identified between haplotypes and quantitative traits of blood pressure. CONCLUSIONS: Two polymorphisms (T-20G and C3389T) and 2 haplotypes (H2 and H8) showed an association with plasma AGT levels in Mexican population.


Subject(s)
Angiotensinogen/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Angiotensinogen/blood , Blood Pressure/genetics , Enzyme-Linked Immunosorbent Assay , Female , Genes/genetics , Genetic Association Studies , Genotype , Haplotypes/genetics , Humans , Hypertension/genetics , Male , Mexico , Obesity/genetics
12.
Pharmacogenomics ; 12(5): 745-56, 2011 May.
Article in English | MEDLINE | ID: mdl-21391885

ABSTRACT

AIM: The CYP2D6 enzyme participates in the metabolism of commonly prescribed drugs: antidepressants, antipsychotics and antihypertensives. The CYP2D6 gene shows a high degree of interindividual and interethnic variability that influences its expression and function. Mexican Mestizos are a recently admixed population resulting from the combination of Amerindian, European and, to a lesser extent, African populations. This study aimed to comprehensively characterize the CYP2D6 gene in Mexican Mestizos. MATERIALS & METHODS: We performed linkage disequilibrium and network analyses in resequencing data of 96 individuals from two regions within Mexico with a different history of admixture and particular population dynamics, the Northwestern state of Sonora and the Central-Pacific state of Guerrero. RESULTS & CONCLUSION: We identified 64 polymorphisms, including 14 novel variants: 13 SNPs and a CYP2D7 exon 2 conversion, that was assigned CYP2D6*82 by the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Three novel SNPs were predicted to have functional effects. For CYP2D6*82 we hypothesize an Amerindian origin that is supported by its identification in three Mexican Amerindian groups (Mayas, Tepehuanos and Mixtecos). Frequencies of CYP2D6*1, *2, *4, *5, *10, *29, *53, *82 and its duplications were 50.0, 25.5, 14.1, 2.0, 2.6, 1.0, 0.5, 2.1 and 3.6%, respectively. We found significant frequency differences in CYP2D6*1 and *2 between Mexican Mestizos and in CYP2D6*1, *2, *4, *5, *10 and *29 between Mexicans and at least one other population. We observed strong linkage disequilibrium and phylogenetic relationships between haplotypes. To our knowledge, this study is the first comprehensive resequencing analysis of CYP2D6 in Mexicans or any other Latin American population, providing information about genetic diversity relevant in the development of pharmacogenomics in this region.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Genetic Variation/genetics , Haplotypes/genetics , Indians, North American/genetics , Gene Frequency/genetics , Genetic Linkage/genetics , Humans , Indians, North American/ethnology , Mexico/ethnology
SELECTION OF CITATIONS
SEARCH DETAIL
...