Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(28): 72430-72445, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37171726

ABSTRACT

All changes taking place in a watershed have repercussions on lacustrine environments, being these, the sink of all activities occurring in the basin. Lake Titicaca, the world's highest and navigable lake, is not unfamiliar with these phenomena that can alter the sedimentation dynamics and metal accumulation. This study aimed to identify temporal trends of sedimentation rates by employing a geochronological analysis (210Pb, 137Cs) and to propose metal background values in Puno Bay, as well as to identify metal concentrations (As, Ba, Ca, Cr, Cu, K, Mg, Mo, Ni, Pb, Zn) in the projected timeline to propose, for the first time, background values in Puno Bay. Two sediment cores were collected from the outer and inner bays. Sediment rate (SR) was calculated through the excess of 210Pb (210Pbxs) applying the Constant Flux Constant Sedimentation (CFCS) model. Results show that SR in the outer bay was 0.48 ± 0.08 cm a-1 and for the inner bay was 0.64 ± 0.07 cm a-1. Sediment quality guidelines (SQGs) did not indicate toxicity was likely to occur, except for As. However, enrichment factors (EFs) indicated that all metal accumulation is geogenic. Climatic factors had a marked influence on sedimentation rates for the outer bay, and in the case of the inner bay, it was a sum of climatic and human-based factors.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Metals, Heavy/analysis , Geologic Sediments/analysis , Lead/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Bays , China
2.
Sci Total Environ ; 871: 162051, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36754329

ABSTRACT

Spatial distribution and interpolation methods provide a summarized overview about the pollution dispersion, concerning the environment's quality. A high-altitude lake was taken as a model to assess the metalloid As and metals Cr, Cu, Ni, Pb, Zn distribution in superficial sediment and classify them according to their ecotoxicological potential in the aquatic environment. Surface sediments were collected from 11 sites along Puno Bay located at the western area of Lake Titicaca, Peru, and analyzed for pseudo total-metals. Sediment concentration data and quality were plotted using the Inverse Distance Weighting (IDW) as an interpolation method. High concentrations of As were found especially in the outer bay (81.73 mg.kg-1). Spatial heterogeneity was evidenced for metal by the coefficient of variation, although no significative differences were observed between the two bays applying a Kruskall Wallis test (p < 0.05, df = 1). Sediment quality classification showed that most metal values were below TEL and toxicity was unlikely to occur, only As exceeded threefold PEL values, which categorized sediment as "Very Bad", indicating a rather high ecotoxicological potential to the aquatic environment. In conclusion, spatial analysis connected to interpolation methods demonstrated the superficial sediment heterogeneity in Puno Bay.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Arsenic/analysis , Metals, Heavy/analysis , Bays , Lakes/analysis , Peru , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL
...