Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(5): 103546, 2024 May.
Article in English | MEDLINE | ID: mdl-38430776

ABSTRACT

Low crude protein (CP) diets can reduce nitrogen (N) excretion and costs by increasing N utilization efficiency. Exogenous proteases may further improve protein digestibility in low CP diets. This study first evaluated in vitro the efficacy of a multiprotease on amino acid (AA) release from feedstuffs and broiler feed. Later, a broiler study evaluated the effect of feeding corn-soybean meal diets containing 3 CP levels (17, 19, and 21% CP) with supplementation on top of 0 or 2,400 U/kg multiprotease on chicken growth performance, total tract CP, and ileal AA digestibilities, and energy utilization. Ross 708 male chickens were placed in 42 cages and assigned to 6 treatments resulting from a 3 × 2 factorial arrangement. Three isocaloric basal diets were formulated to reduce CP, but all diets maintained digestible Lys:CP in 5.47% and the same ideal protein profile. Data were analyzed in a completely randomized design. On average, the multiprotease increased (P < 0.05) in vitro free AA release by 27.81% in most feedstuffs evaluated compared to the control. For broiler feed, 1,200 U/g multiprotease addition improved (P < 0.001) in vitro free AA release by 18.90%. This multiprotease showed interaction effects (P < 0.05) on chicken FCR, energy, and CP digestibility. As expected, BW at 24 d, BW gain, and FCR (8-24 d) worsened (P < 0.001) as dietary CP reduced from 21 to 17%, and multiprotease addition did not improve (P > 0.05) these parameters. BW gain decreased by 12.9% when N intake was reduced from 49.32 to 38.49 g/bird. Multiprotease supplementation improved (P < 0.01) AMEn by 71 kcal/kg, CP digestibility from 59.45 to 63.51%, ileal AA digestibility, and DM digestibility from 67.08 to 73.49%, but only in the 21% CP diet. No differences in ileal AA digestibility due to CP level (P > 0.05) were detected, except for Cys digestibility (P < 0.01). In conclusion, low CP diets reduced growth performance and improved N utilization but negatively affected energy utilization efficiency. Exogenous multiprotease supplementation improved AME, AMEn, protein, ileal AA, and DM digestibility in the 21% CP diet without significantly affecting growth performance.


Subject(s)
Amino Acids , Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Dietary Proteins , Dietary Supplements , Digestion , Energy Metabolism , Animals , Chickens/physiology , Chickens/growth & development , Animal Feed/analysis , Diet/veterinary , Male , Amino Acids/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Energy Metabolism/drug effects , Digestion/drug effects , Dietary Supplements/analysis , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Random Allocation , Nutrients/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/administration & dosage , Dose-Response Relationship, Drug
2.
Poult Sci ; 103(3): 103408, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320393

ABSTRACT

High oleic (HO) soybeans may serve as a value-added feed ingredient; providing amino acids and estimating their dietary energy value for broilers is essential. In this study, we determined the apparent metabolizable energy (AME), AME corrected for zero nitrogen retention (AMEn), digestibility, and nitrogen (N) retention of HO full-fat (HO-FF) soybean as compared to solvent-extracted soybean meal (SE-SBM), normal oleic full-fat (NO-FF) and extruded expeller (NO-EE) soybean. A total of 240 Ross-708 male broilers were selected, with 8 replicates per treatment and 6 chicks per cage. The AME and AMEn were estimated using the difference method with a 30% inclusion of test ingredients using a corn-soy reference diet with partial and total excreta collection. The index method with partial excreta collection used titanium dioxide as an inert marker. The same starter diet was provided for all birds for 14 d, followed by the reference and assay diets for the next 6 adaptation days. Total excreta were collected twice a day for 3 d. The AME and AMEn values determined for the HO-FF and NO-FF were higher (P < 0.001) than the NO-EE and SE-SBM. The AME of SE-SBM and NO-EE were similar with both methods, but the AMEn of SE-SBM was lower than the NO-EE only with the partial collection method. The agreement between AME and AMEn values determined by partial and total excreta collection analysis was 98%. Data from the total excreta collection method yielded higher AME and AMEn values (P < 0.001) than those from the partial collection method. In summary, HO-FF and NO-FF soybean meals had similar AME and AMEn values. The HO-FF soybean had 39 and 24% higher AME and AMEn than SE-SBM. Hence, high oleic full-fat soybean meal could serve as a valuable alternative feed ingredient to conventional SE-SBM meals in broiler diets, providing additional energy while providing amino acids and more oleic acid to enrich poultry meat products.


Subject(s)
Chickens , Glycine max , Animals , Male , Chickens/metabolism , Flour , Nitrogen/metabolism , Animal Feed/analysis , Energy Metabolism , Animal Nutritional Physiological Phenomena , Amino Acids/metabolism , Oleic Acids/metabolism
3.
Poult Sci ; 103(3): 103399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281331

ABSTRACT

The effects of high oleic oil full-fat (HO-FF) soybean meal (SBM) on broiler meat quality could lead to value-added food products. This experiment evaluated the effects of dietary normal oleic extruded expelled (NO-EE), normal oleic full-fat (NO-FF), or HO-FF SBM on live performance, carcass and parts yield, and breast fatty acid composition. Diets were formulated to be isoenergetic and isonitrogenous. A total of 540 Ross-708 male broilers were raised on floor pens with 18 broilers/pen and 10 replicates/treatment. Data were analyzed in a completely randomized design. Chickens were fed with a starter (0-14 d), grower (15-35 d), or a finisher diet (36-47 d) up to 47 d. Chickens were weighed at 7, 14, 35, and 47 d. At 48 d, 4 broilers per pen were processed. Breast samples were collected and evaluated for quality and fatty acid content. Broilers fed diets with NO-EE were heavier (P < 0.05) than chickens fed diets with full-fat SBM (NO-FF and HO-FF) at d 7, 14, 35 while feed conversion ratio (FCR) of NO-EE was best (P < 0.05) at 7 and 47 d. Carcass yield was also higher for broilers fed NO-EE than the other treatments. Diet did not affect parts yield, breast meat color, cooking, drip loss, white stripping, or SM quality parameters. More breast fillets without wooden breast (score 1) were observed (P < 0.05) for NO-FF than the other 2 treatments. The breast meat fatty acid profile (g fatty acid/100 g of all fatty acids) was significantly affected (P < 0.001) by diet. Broilers fed the HO-FF SBM diet had 54 to 86% more oleic acid, 72.5% to 2.2 times less linoleic acid, and reduced stearic and palmitic acid levels in the breast meat than NO-FF and NO-EE. In conclusion, feeding HO-FF to broilers enriched the oleic acid content of their breast meat while reducing the saturated fatty acid content relative to the NO-FF and NO-EE treatment groups.


Subject(s)
Chickens , Fatty Acids , Animals , Male , Diet, High-Fat , Flour , Glycine max , Oleic Acid
4.
Poult Sci ; 102(12): 103152, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967503

ABSTRACT

High-oleic (HO) soybean may serve as a value-added feed ingredient to enrich poultry meat due to its fatty acid content. However, the amino acid (AA) nutrient digestibility of soybean meal (SBM) made from these soybeans has yet to be determined. The objective of this study was to determine apparent ileal AA digestibility (AID) and standardized ileal AA digestibility (SID) of high-oleic full-fat (HO-FF) SBM compared to normal oleic full-fat (NO-FF), normal oleic extruded expeller (NO-EE), and solvent-extracted SBM (SE-SBM) in broilers. A nitrogen-free basal diet (NFD) was fed to 1 treatment group with 10 chicks/cage to determine basal endogenous losses (BEL). Titanium dioxide was used as an inert marker. The test diets contained 57.5% of the basal NFD and 42.5% of 1 of the 4 soybean sources. A total of 272 Ross-708 male broilers were placed in 40 battery cages with 5 treatments and 8 replicates per treatment. A common starter diet was provided to all the chickens for 14 d. Experimental diets were provided as a mash for 9 d before sample collection. Chickens were euthanized with CO2 on d 23, and contents of the distal ileum were collected, frozen, and freeze-dried. The BEL were similar to the values found in the literature. At d 23, broilers fed the SE-SBM had the highest body weight gain and best FCR compared to chickens fed the HO-FF and NO-FF treatments (P < 0.001). Broilers fed the SE-SBM and NO-EE experimental diets had (P < 0.001) higher apparent ileal AA digestibility and AA SID than broilers fed the HO-FF and NO-FF treatments. In conclusion, the SID of AA from HO-FF is similar to the digestibilities of other full-fat soybeans found in the literature and is lower than that of NO-EE and SE-SBM.


Subject(s)
Amino Acids , Glycine max , Animals , Male , Amino Acids/metabolism , Chickens/metabolism , Flour , Digestion , Diet/veterinary , Nutrients , Ileum/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
5.
Poult Sci ; 100(10): 101398, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34428645

ABSTRACT

Crude protein and amino acid (AA) content in rearing diets affect body composition and reproductive performance. This study evaluated the effects of 4 dietary AA levels during rearing on BW, egg production and composition, fertility, hatchability, and embryo mortality up to 65 wk of age on Cobb 500 slow-feathering (SF) broiler breeders. The treatments consisted in 80% (low-AA), 90% (moderate-AA), 100% (standard-AA), and 110% (high-AA) of the AA recommendations for Cobb 500 SF pullets from 5 to 24 wk. AA was guided by an ideal protein profile based on digestible Lys. A total of 1,360 pullets and 288 Cobb MV cockerels were randomly placed in 16 pullets and 16 cockerel floor-pens. At 22 wk, 1,040 females and 112 males were transferred into 16-floor pens in a laying house. BW increased linearly (P < 0.01) as AA augmented at 25, 36, and 40 wk. No effects (P > 0.05) at the onset of lay were observed. Moderate-AA and standard-AA resulted in the best hen-housed egg production (HHEP) at 65 wk with 174.3 and 176.5 eggs, respectively. The optimum level of AA for HHEP at 65 wk was estimated (P < 0.001) in 96.7% and 94.7% by the quadratic and broken line models, respectively. Overall, the lightest egg weight (P = 0.022) was obtained with 89%AA during rearing, and the heaviest eggs (P < 0.001) were found at 54 wk. Response surface regression indicated linear effects on albumen and yolk percentages (P < 0.01) increasing and decreasing, respectively, as AA levels augmented; consequently, AA had a negative linear effect on Y:A ratio (P = 0.004) with quadratic effects (P < 0.01) of age (R2 = 0.92). No statistical effect of treatments was observed in fertility (P > 0.05), but AA had a quadratic effect (P = 0.046) on hatchability up to 50 wk of age with 97% as optimum, and decreased linearly (P = 0.004) from 51 to 65 wk. A few effects of treatments (P < 0.05) on embryo mortality were observed. In conclusion, AA levels during rearing affect broiler breeder reproductive performance.


Subject(s)
Animal Feed , Chickens , Amino Acids , Animal Feed/analysis , Animals , Body Weight , Diet/veterinary , Female , Male , Ovum , Reproduction
6.
Poult Sci ; 100(9): 101327, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34329988

ABSTRACT

Adequate pullet nutrition is essential to reach BW and suitable body composition for reproduction. An experiment was conducted to determine the effects of 4 dietary amino acid (AA) levels on BW, flock uniformity, body conformation, organ, leg, and feathering development of broiler breeder pullets during the rearing phase from 5 to 24 wk. A total of 1,360 Cobb-500 slow-feathering (SF) pullets were randomly placed in 16-floor pens with 85 females per pen. Diets with corn, soybean meal, and wheat-midds were formulated without protein restriction maintaining minimum ratios between essential AA and Lys on a digestible (dig) ideal basis. Treatments consisted of 4 dietary AA levels with 80% (low-AA), 90% (moderate-AA), 100% (standard-AA), and 110% (high-AA) of the Cobb-Vantress recommendations guided by dig Lys using balanced protein. Up to 4 wk, all pullets were fed a common starter crumble diet. Grower and developer mash diets were fed to pullets from 5 to 15 wk and from 16 to 24 wk, respectively. Pullets fed standard-AA and high-AA diets were heavier (P < 0.001) than those fed low-AA diets at 10, 15, and 20 wk of age. High-AA diets resulted in better (P = 0.040) flock uniformity at 10 wk. Pullets fed a high-AA diet had the highest (P = 0.041) relative breast weight at 20 wk of age and the lowest (P = 0.044) deposits of abdominal fat at 15 wk of age. Fleshing increased (P < 0.05) as AA content rise in the diet, while the relative shank length (P < 0.001) and the number of wing juvenile feathers (P = 0.004) decreased. Pullets fed the lowest dietary AA level had the longest (P = 0.007) small intestine relative to BW at 10 wk of age, but a smaller (P = 0.001) liver than those fed moderate and standard-AA diets at 20 wk of age. Dietary AA levels have important effects on pullet BW, fleshing, and organ development during rearing with potential reproductive performance impacts.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Amino Acids , Animal Feed/analysis , Animals , Body Weight , Diet/veterinary , Feathers , Female
7.
Poult Sci ; 99(9): 4242-4248, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32867968

ABSTRACT

A study was conducted to determine differences between Histomonas meleagridis-infected and control pullets based on disease signs, hen growth, and egg production and quality. Ross 708SF females were weighed and then placed in pens on the day of hatch (92 chicks/pen). At 25 D, 4 pens were infected with H. meleagridis in the cloaca, whereas 4 pens were control. At 5, 10, and 20 D after inoculation, 5 birds per pen (2 birds per pen at 20 D) were subjectively scored for blackhead disease. Birds were feed restricted based on BW and/or egg production. Individual BW were collected at 3, 5, 13, 15, 20, and 64 wk. Egg production was recorded at 24-63 wk. Egg quality was measured at 30, 34, 39, 42, and 56 wk and included shell and vitelline membrane strength, shell thickness, egg weight, and Haugh units. Hatchability was measured at 27, 37, and 60 wk and fertility at 27 and 37 wk. Treatment effects were determined by JMP Pro 14 using GLM with means separated using the Student t test (P ≤ 0.05). Cecal lesions were apparent on 5, 10, and 20 D and liver lesions on 10 and 20 D for the infected birds. The control had no histomoniasis lesions. Flock uniformity differed on wk 13 and 20 (P = 0.04; 0.04). Infected birds weighed less at 64 wk (P = 0.002). The onset of lay was not delayed. Infected birds produced more eggs during 1 period (P = 0.02). The infected birds produced heavier eggs at 30 wk (P = 0.04), eggs with a stronger and thicker shell at 42 wk (P = 0.05, 0.03), and eggs with a stronger vitelline membrane at 56 wk (P = 0.049). Hatchability and fertility did not differ (P > 0.05). H. meleagridis was observed in the infected birds' cecal samples at trial termination. This study indicates early infection with H. meleagridis has limited effects on pullet egg production and quality.


Subject(s)
Chickens , Poultry Diseases , Protozoan Infections, Animal , Trichomonadida , Animals , Body Weight , Chickens/growth & development , Female , Fertility , Oviposition , Poultry Diseases/parasitology , Poultry Diseases/pathology , Protozoan Infections, Animal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...