Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(14): 14032-14042, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37428961

ABSTRACT

Lithium-sulfur (Li-S) batteries using Li2S and Li-free anodes have emerged as a potential high-energy and safe battery technology. Although the operation of Li-S full batteries based on Li2S has been demonstrated at room temperature, their effective use at a subzero temperature has not been realized due to the low electrochemical utilization of Li2S. Here, ammonium nitrate (NH4NO3) is introduced as a functional additive that allows Li-S full batteries to operate at -10 °C. The polar N-H bonds in the additive alter the activation pathway of Li2S by inducing the dissolution of the Li2S surface. Then, Li2S with an amorphized surface layer undergoes the modified activation process, which consists of the disproportionation and direct conversion reaction, through which Li2S is efficiently converted into S8. The Li-S full battery using NH4NO3 delivers a reversible capacity and cycling stability over 400 cycles at -10 °C.

2.
Adv Sci (Weinh) ; 10(16): e2301201, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068194

ABSTRACT

Batteries using potassium metal (K-metal) anode are considered a new type of low-cost and high-energy storage device. However, the thermodynamic instability of the K-metal anode in organic electrolyte solutions causes uncontrolled dendritic growth and parasitic reactions, leading to rapid capacity loss and low Coulombic efficiency of K-metal batteries. Herein, an advanced electrolyte comprising 1 M potassium bis(fluorosulfonyl)imide (KFSI) + 0.05 M potassium hexafluorophosphate (KPF6 ) dissolved in dimethoxyethane (DME) is introduced as a simple and effective strategy of regulated solvation chemistry, showing an enhanced interfacial stability of the K-metal anode. Incorporating 0.05 M KPF6 into the 1 M KFSI in DME electrolyte solution decreases the number of solvent molecules surrounding the K ion and simultaneously leads to facile K+ de-solvation. During the electrodeposition process, these unique features can lower the exchange current density between the electrolyte and K-metal anode, thereby improving the uniformity of K electrodeposition, as well as potentially suppressing dendritic growth. Even under a high current density of 4 mA cm-2 , the K-metal anode in 0.05 M KPF6 -containing electrolyte ensures high areal capacity and an unprecedented lifespan with stable Coulombic efficiency in both symmetrical half-cells and full-cells employing a sulfurized polyacrylonitrile cathode.

3.
Adv Sci (Weinh) ; 8(4): 2002636, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643793

ABSTRACT

Manganese (Mn)-based cathode materials have garnered huge research interest for rechargeable aqueous zinc-ion batteries (AZIBs) due to the abundance and low cost of manganese and the plentiful advantages of manganese oxides including their different structures, wide range of phases, and various stoichiometries. A novel in situ generated Mn-deficient ZnMn2O4@C (Mn-d-ZMO@C) nanoarchitecture cathode material from self-assembly of ZnO-MnO@C for rechargeable AZIBs is reported. Analytical techniques confirm the porous and crystalline structure of ZnO-MnO@C and the in situ growth of Mn deficient ZnMn2O4@C. The Zn/Mn-d-ZMO@C cell displays a promising capacity of 194 mAh g-1 at a current density of 100 mA g-1 with 84% of capacity retained after 2000 cycles (at 3000 mA g-1 rate). The improved performance of this cathode originates from in situ orientation, porosity, and carbon coating. Additionally, first-principles calculations confirm the high electronic conductivity of Mn-d-ZMO@C cathode. Importantly, a good capacity retention (86%) is obtained with a year-old cell (after 150 cycles) at 100 mA g-1 current density. This study, therefore, indicates that the in situ grown Mn-d-ZMO@C nanoarchitecture cathode is a promising material to prepare a durable AZIB.

4.
ACS Appl Mater Interfaces ; 12(14): 16376-16386, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32186369

ABSTRACT

Lithium-ion batteries (LIBs) are widely used in various electronic devices and have garnered a huge amount of attention. In addition, evaluation of the intrinsic properties of LIB cathode materials is of considerable interest for practical applications. Therefore, through first-principles calculations based on the density functional theory, we investigated the structural, electronic, electrochemical, and kinetic properties of mixed transition metals, that is, Ni-substituted LiMnPO4 (LMP) and LiMnPO4F (LMPF) cathode materials, that is, LiMn0.5Ni0.5PO4 (LMNP) and LiMn0.5Ni0.5PO4F (LMNPF), respectively, which have not been extensively studied. We also evaluated their delithiated phases, that is, Mn0.5Ni0.5PO4 (MNP) and Mn0.5Ni0.5PO4F (MNPF). Our calculations suggest that Ni substitution significantly affected the structural and electrochemical properties. After Li insertion, the MNPF unit-cell volume increased by about 8%, lower than that of pristine MnPO4F. The Li intercalation voltage also increased in LMNP (4.27 V) and LMNPF (5.23 V). In addition, the migration barrier was calculated to be 0.4 eV for LMNPF, lower than that of LMPF. This study may provide insights for developing LMNP and LMNPF cathode materials in LIB applications.

5.
RSC Adv ; 10(11): 6536-6539, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-35496009

ABSTRACT

Herein, we synthesize a nanostructured bismuth sulfide/carbon nanotube composite and demonstrate its potential use as a high-capacity anode for K-ion batteries, for the first time. The composite anode shows reversible K-ion storage capabilities that are supported by density functional theory calculations.

6.
R Soc Open Sci ; 6(4): 181978, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31183129

ABSTRACT

Reduced graphene oxide (rGO) sheets were synthesized by a modified Hummer's method without additional reducing procedures, such as chemical and thermal treatment, by appropriate drying of graphite oxide under ambient atmosphere. The use of a moderate drying temperature (250°C) led to mesoporous characteristics with enhanced electrochemical activity, as confirmed by electron microscopy and N2 adsorption studies. The dimensions of the sheets ranged from nanometres to micrometres and these sheets were entangled with each other. These morphological features of rGO tend to facilitate the movement of guest ions larger than Li+. Impressive electrochemical properties were achieved with the rGO electrodes using various charge-transfer ions, such as Li+, Na+ and K+, along with high porosity. Notably, the feasibility of this system as the carbonaceous anode material for sodium battery systems is demonstrated. Furthermore, the results also suggest that the high-rate capability of the present rGO electrode can pave the way for improving the full cell characteristics, especially for preventing the potential drop in sodium-ion batteries and potassium-ion batteries, which are expected to replace the lithium-ion battery system.

7.
Chem Commun (Camb) ; 55(26): 3793-3796, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30864605

ABSTRACT

We explore NaV6O15 (NVO) nanorod cathodes prepared by a sol-gel method for aqueous rechargeable zinc-ion battery applications for the first time. The NVO cathode delivers a high capacity of 427 mA h g-1 at 50 mA g-1 current density. Furthermore, based on the mass of the active materials, it exhibits a high energy density of 337 W h kg-1.

8.
RSC Adv ; 9(42): 24030-24038, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-35527880

ABSTRACT

A simple one-pot polyol-assisted pyro-technique has been adopted to synthesize highly crystalline, carbon-coated LiMn2O4 (LMO/C) nanoparticles for use as a cathode material in rechargeable Li-ion battery (LIB) applications. The phase purity, structure and stoichiometry of the prepared cathode was confirmed using X-ray techniques that included high-resolution powder X-ray diffraction and X-ray absorption fine structure spectroscopy. Electron microscopy studies established that the synthetic technique facilitated the production of nano-sized LMO particles with uniform carbon coating. The prepared LMO/C cathode demonstrates excellent electrochemical properties (cycling stabilities of 86% and 77.5% and high rate capabilities of 79% and 36% within the potential windows of 3.3-4.3 V and 2.5-4.3 V, respectively). The high electrochemical performance of the LMO/C cathode is attributed to the nano-size of the LiMn2O4 particles enabling high surface area and hence greater lithium insertion and also the uniform amorphous carbon coating facilitating effective reduction in manganese dissolution and volume expansion during the lithium de-intercalation/intercalation reactions. In addition, cyclic voltametry and impedance characterization confirm the reversible Li-intercalation and the role of the solid electrolyte interface layer (SEI) in the stable electrochemical reaction of the LMO/C electrode. Furthermore, this study shows the efficacy of a simple and low-cost pyro-synthetic method to realize high performance nano-sized particle electrodes with uniform carbon coating for useful energy storage applications.

9.
ChemSusChem ; 11(13): 2239-2247, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29708309

ABSTRACT

Rechargeable hybrid aqueous batteries (ReHABs) have emerged as promising sustainable energy-storage devices because all components are environmentally benign and abundant. In this study, a carbon-wrapped sponge-like Na3 V2 (PO4 )3 nanoparticle (NVP@C) cathode is prepared by a simple pyrosynthesis for use in the ReHAB system with impressive rate capability and high cyclability. A high-resolution X-ray diffraction study confirmed the formation of pure Na ion superionic conductor (NASICON) NVP with rhombohedral structure. When tested in the ReHAB system, the NVP@C demonstrated high rate capability (66 mAh g-1 at 32 C) and remarkable cyclability over 1000 cycles (about 72 % of the initial capacity is retained at 30 C). Structural transformation and oxidation change studies of the electrode evaluated by using in situ synchrotron X-ray diffraction and ex situ X-ray photoelectron spectroscopy, respectively, confirmed the high reversibility of the NVP@C electrode in the ReHAB system through a two-phase reaction. The combined strategy of nanosizing and carbon-wrapping in the NVP particles is responsible for the remarkable electrochemical properties. The pyrosynthesis technique appears to be a promising and feasible approach to prepare a high-performance electrode for safe and low-cost ReHAB systems as nextgeneration large-scale energy storage devices.

10.
Nanoscale ; 10(13): 5938-5949, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29542744

ABSTRACT

Pyrite (FeS2) is a promising electrode material for lithium ion batteries (LIBs) because of its high natural availability, low toxicity, cost-effectiveness, high theoretical capacity (894 mA h g-1) and high theoretical specific energy density (1270 W h kg-1, 4e-/FeS2). Nevertheless, the use of FeS2 in electrochemical capacitors was restricted due to fast capacity fading as a result of polysulfide (S/Sn2-) formation during the initial electrochemical cycling. In order to avoid the formation of polysulfides, we employed the strategy of utilizing an ether based electrolyte (1.0 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/diglyme (DGM)). Herein, we introduce FeS2/C as the Faradaic electrode for a non-aqueous hybrid electrochemical capacitor (NHEC) in combination with activated carbon (AC) as a non-Faradaic electrode, and 1.0 M LiTFSI/DGM as a non-aqueous electrolyte. Specifically, FeS2/C nanoparticles have been prepared via the sulfidation of a room temperature synthesized Fe-based MOF (metal organic framework) precursor. The fabricated FeS2/C∥AC NHEC, operating within the chosen voltage window of 0-3.2 V, delivered energy densities in the range of 63-9 W h kg-1 at power densities of 152-3240 W kg-1. Remarkable cycling stability with stable energy density retention for 2500 cycles at high power densities (729, 1186 and 3240 W kg-1) was observed.

11.
ACS Appl Mater Interfaces ; 8(51): 35235-35242, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27977124

ABSTRACT

Herein, we report on a high-discharge-rate Na3V2(PO4)3-Ni2P/C (NVP-NP/C) composite cathode prepared using a polyol-based pyro synthesis for Na-ion battery applications. X-ray diffraction and electron microscopy studies established the presence of Na3V2(PO4)3 and Ni2P, respectively, in the NVP-NP/C composite. As a cathode material, the obtained NVP-NP/C composite electrode exhibits higher discharge capacities (100.8 mAhg-1 at 10.8 C and 73.9 mAhg-1 at 34 C) than the NVP/C counterpart electrode (62.7 mAhg-1 at 10.8 C and 4.7 mAhg-1 at 34 C), and the composite electrode retained 95.3% of the initial capacity even after 1500 cycles at 16 C. The enhanced performance could be attributed to the synergetic effect of the Ni2P phase and nanoscale NVP particles, which ultimately results in noticeably enhancing the electrical conductivity of the composite. The present study thus demonstrates that the Na3V2(PO4)3-Ni2P/C nanocomposite is a prospective candidate for NIB with a high power/energy density.

12.
Chemistry ; 22(6): 2039-2045, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26749376

ABSTRACT

A nanostructured Mn3 O4 /C electrode was prepared by a one-step polyol-assisted pyro-synthesis without any post-heat treatments. The as-prepared Mn3 O4 /C revealed nanostructured morphology comprised of secondary aggregates formed from carbon-coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3 O4 /C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g-1 at a current density of 33 mA g-1 , good capacity retentions (1141 mAh g-1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g-1 at 528 and 1056 mA g-1 , respectively) when tested as an anode for lithium-ion battery applications.

13.
Chem Commun (Camb) ; 51(61): 12274-7, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26137998

ABSTRACT

Hierarchical meso-/macroporous anatase TiO2 was synthesized by the hydrolysis of a titanium metal-organic framework precursor followed by calcination in air. This unique porous feature enables the superior rate capability and excellent cycling stability of anatase TiO2 as an anode for rechargeable lithium-ion batteries.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Organometallic Compounds/chemistry , Titanium/chemistry , Electrodes , Ions/chemistry , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...