Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 148: 106166, 2023 12.
Article in English | MEDLINE | ID: mdl-37844443

ABSTRACT

The novel applications of MoSi2 and SiC as matrix and reinforcing materials in the creation of high-performance composites were investigated in this work. In particular, Spark Erosion Machining's geometric tolerances were studied in order to shed light on the technique's potential for precision manufacture in the realm of MoSi2-SiC composites. Our research focused on evaluating critical parameters and their impact on machining performance, including material removal rate, surface roughness, wear rate and drilled hole accuracy. In-depth research revealed the critical input factors that had the greatest impact on the machining procedure. Notably, parameters such as current (32%), sparking on time (23%), sparking gap voltage (12%), dielectric pressure (12%), and sparking off time (17%) emerged as the most influential factors, as determined by ANOVA analysis. These findings provide valuable insights into optimizing the Sparking EDM approach for MoSi2-SiC composite materials. This study further demonstrated the improvement in composite desirability ratings across multiple performance criteria, highlighting the effectiveness of Sparking EDM in enhancing machining outcomes (e.g., from 0.8523 to 0.9527). Correlations between the EDM's output responses were found to be quite high when geometric tolerances and the coefficient of determination (R2) were used (0.7858, 0.9625, 0.8427, 0.8678, 0.8474, 0.8368, 0.8344, 0.8671). Consider that, for the sake of a more complete understanding of the procedure's approach, the emphasis is on the methodology rather than the multifaceted metal removal mechanisms involved. This research doesn't dive further into the physical concerns of Spark Erosion Machining, but it does provide insights into the practical application of this technique in the precision manufacturing of MoSi2-SiC composite materials. For real-world medical applications such implanted devices, dental implants, surgical instruments, biological sensors and diagnostics, this study provides a valuable and encouraging approach. A validation experiment verifies the results, proving the feasibility of improved spark erosion in high-precision production. The results of this research show that EDM methods can be fine-tuned to produce ceramic composites with much greater MRR, superior surface finishes and a marked decrease in subsurface cracking and microstructural modifications. This is essential for protecting the integrity of materials used in life-saving medical equipment.


Subject(s)
Ceramics
2.
Materials (Basel) ; 14(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576343

ABSTRACT

Various thermal spraying approaches, such as air/atmospheric plasma spraying (APS) and high-velocity oxy-fuel (HVOF) spraying, are widely employed by plants owing to their flexibility, low costs and the high surface quality of the manufactured product. This study focuses on the corrosion behavior of a Ni superalloy coated with powder Cr3C2-25NiCr through APS and HVOF at 950 °C under air oxidation and Na2SO4 + 0.6V2O5 molten salt environments (MSE). The results show that HVOF-deposited Ni superalloys have higher hardness and bond strength than the respective APS coating. The thermo-gravimetric probe reveals that the Ni superalloys exposed to an oxidizing air environment has a minor mass gain compared to those under the MSE domain for both non-coated and coated samples, in line with the parabola curvature rate oxidizing law. The Ni superalloys show good corrosion resistance but poor oxidation resistance in APS-deposited Ni superalloys under the MSE. HVOF-coated Ni superalloys in both environments exhibit better corrosion resistance and lower mass gain than APS-coated superalloys. The excellent coating characteristics of HVOF-coated Ni superalloys lead to their better high-temperature corrosion performance than APS.

3.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209444

ABSTRACT

Reinforced composite materials have many applications in the aerospace, marine, and petroleum industries. Glass fiber-reinforced pipes are of considerable importance as pressurized vessels, infrastructure materials, and petroleum wastewater pipelines. The stress intensity factor due to through-thickness discontinuities is a major parameter in fracture mechanics to understand the failure mechanisms in glass fiber-composite pipes. The stress intensity factor is calculated for a composite cylinder subjected to internal pressure using the linear extended finite element method based on the law of energy release evaluation of surface damage. The analytical model needs two material properties; they are the tensile strength and the fracture toughness; therefore, a standard tensile test was carried out on a standard specimen taken from the pipe's wall thickness. Moreover, the compact tension test specimen was manufactured from the pipe's wall thickness to obtain the fracture toughness. The average tensile strength was measured as 21.5 MPa with a standard deviation of 5.59 MPa, moreover, the average Young's modulus was measured as 32.75 GPa with a standard deviation of 6.64 GPa. The fracture toughness was measured as 2322 (MPa √m) with a standard deviation of 142.5 (MPa √m), whereas the average surface release energy (GIC) was 153.6 kJ/m2 with a standard deviation of 22.53 kJ/m2. A valuable design equation was extracted from the finite element model to measure the effect of cracks on the hoop stress of the cylinder wall thickness based on a nonlinear model. Moreover, an acceptable equation was used to calculate the correction and shape factor of a cylinder with movable and unmovable through-thickness cracks. This study provides useful tools and guidance for the design and analysis of composite cylinders.

4.
Comput Intell Neurosci ; 2021: 4471995, 2021.
Article in English | MEDLINE | ID: mdl-34976038

ABSTRACT

This research focuses on the synthesis of linkage parameters for a bistable compliant system (BSCS) to be widely implemented within space applications. Initially, BSCS was theoretically modeled as a crank-slider mechanism, utilizing pseudo-rigid-body model (PRBM) on stiffness coefficient (v), with a maximum vertical footprint (b max) for enhancing vibration characteristics. Correlations for mechanism linkage parameters (MLPs) and responses (v and b max) were set up by utilizing analysis of variance for response surface (RSM) technique. RSM evaluated the impact of MLPs at individual/interacting levels on responses. Consequently, a hybrid genetic algorithm-based particle swarm/flock optimization (GA-PSO) technique was employed and optimized at multiple levels for assessing ideal MLP combinations, in order to minimize characteristics (10% v + 90% of b max). Finally, GA-PSO estimated the most appropriate Pareto-frontal optimum solutions (PFOS) from nondominance set and crowd/flocking space approaches. The resulting PFOS from validation trials demonstrated significant improvement in responses. The adapted GA-PSO algorithm was executed with ease, extending the convergence period (through GA) and exhibiting a good diversity of objectives, allowing the development of large-scale statistics for all MLP permutations as optimal solutions. A vast set of optimal solutions can be used as a reference manual for mechanism developers.


Subject(s)
Algorithms , Intelligence
5.
Materials (Basel) ; 15(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35009406

ABSTRACT

The fuel consumption of high-density automobiles has increased in recent years. Aluminum (Al) alloy is a suitable material for weight reduction in vehicles with high ductility and low weight. To address environmental problems in aircraft and maritime applications, in particular rust development and corrosion, the current study assesses the corrosion behavior during friction stir welding (FSW) of two dissimilar Al alloys (AA6061 and AA8011) in various corrosive conditions using salt spraying and submersion tests. Two acidic solutions and one alkaline solution are used in these tests, which are performed at room temperature. The two specimens (AA6061 and AA8011) and the weld region are suspended in a salt spraying chamber and a 5 wt.% NaCl solution is continually sprayed using the circulation pump for 60 h, with the specimens being weighed every 15 h to determine the corrosion rates. According to the salt spraying data, the weld zone has a higher corrosion resistance than the core components. For twenty-eight days, individual specimens are submerged in 3.5 wt.% HCl + H2O and H2SO4 + H2O solutions and seawater. The weld area specimens exhibit stronger corrosion resistance than the base material specimens, and weight loss in the saltwater medium is lower when compared to the other test solutions, according to the corrosion analysis. The scanning electron microscope (SEM) analysis demonstrates that the base metal AA8011 is considerably corroded on its surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...