Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 232(6): 2491-2505, 2021 12.
Article in English | MEDLINE | ID: mdl-34510462

ABSTRACT

Plants are able to detect insect eggs deposited on leaves. In Arabidopsis, eggs of the butterfly species Pieris brassicae (common name large white) induce plant defenses and activate the salicylic acid (SA) pathway. We previously discovered that oviposition triggers a systemic acquired resistance (SAR) against the bacterial hemibiotroph pathogen Pseudomonas syringae. Here, we show that insect eggs or treatment with egg extract (EE) induce SAR against the fungal necrotroph Botrytis cinerea BMM and the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. This response is abolished in ics1, ald1 and fmo1, indicating that the SA pathway and the N-hydroxypipecolic acid (NHP) pathway are involved. Establishment of EE-induced SAR in distal leaves potentially involves tryptophan-derived metabolites, including camalexin. Indeed, SAR is abolished in the biosynthesis mutants cyp79B2 cyp79B3, cyp71a12 cyp71a13 and pad3-1, and camalexin is toxic to B. cinerea in vitro. This study reveals an interesting mechanism by which lepidopteran eggs interfere with plant-pathogen interactions.


Subject(s)
Arabidopsis Proteins , Oomycetes , Animals , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Insecta/metabolism , Oomycetes/metabolism , Plant Diseases , Pseudomonas syringae/metabolism , Salicylic Acid
2.
PLoS One ; 11(11): e0165850, 2016.
Article in English | MEDLINE | ID: mdl-27812150

ABSTRACT

The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.


Subject(s)
Gene Expression Regulation, Bacterial , Genomics , Pseudomonas/genetics , Pseudomonas/metabolism , Soil Pollutants/metabolism , Toluene/metabolism , Biodegradation, Environmental , Gene Expression Regulation, Bacterial/drug effects , Genome, Bacterial/genetics , Pseudomonas/drug effects , Soil Pollutants/isolation & purification , Soil Pollutants/toxicity , Toluene/isolation & purification , Toluene/toxicity
3.
PLoS Genet ; 11(6): e1005300, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26070206

ABSTRACT

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Plant Roots/growth & development , Second Messenger Systems , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Plant Roots/drug effects , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...