Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 133(12): 4285-98, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21381757

ABSTRACT

Heme catalases prevent cells from oxidative damage by decomposing hydrogen peroxide into water and molecular oxygen. Here we investigate the factors that give rise to an undesirable side reaction competing with normal catalase activity, the migration of a radical from the heme active site to the protein in the principal reaction intermediate compound I (Cpd I). Recently, it has been proposed that this electron transfer reaction takes place in Cpd I of Helicobacter pylori catalase (HPC), but not in Cpd I of Penicillium vitale catalase (PVC), where the oxidation equivalent remains located on the heme active site. Unraveling the factors determining the different radical locations could help engineer enzymes with enhanced catalase activity for detection or removal of hydrogen peroxide. Using quantum mechanics/molecular mechanics metadynamics simulations, we show that radical migration in HPC is facilitated by the large driving force (-0.65 eV) of the subsequent proton transfer from a histidine residue to the ferryl oxygen atom of reduced Cpd I. The corresponding free energy in PVC is significantly smaller (-0.19 eV) and, as we argue, not sufficiently high to support radical migration. Our results suggest that the energetics of oxoferryl protonation is a key factor regulating radical migration in catalases and possibly also in hydroperoxidases.


Subject(s)
Catalase/metabolism , Helicobacter pylori/enzymology , Proteins/metabolism , Protons , Catalase/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Penicillium/enzymology , Proteins/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...