Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 439: 129676, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104904

ABSTRACT

Enzyme membrane systems (EMS) have generated considerable interest because of their advantages of accelerating reactions, eliminating product inhibition, and enhancing conversion rates. However, there are deficiencies in the efficient fabrication of affinity carrier membranes and dynamic catalytic separation properties. Herein, a strong and highly flexible spunlaced viscose/bacterial cellulose (BC) composite membrane in situ embedded with graphene oxide (GO) was developed by combining a scalable bio-synthesis method with atom transfer radical polymerization technology. Notably, the layer-by-layer growth of BC on composite film and the addition of GO resulted in an entangled network with strong hydrogen bonding, endowing the resulting membrane with superior mechanical properties and flexibility, while facilitating a gradient structure and porous transport channels. Subsequently, a novel and highly efficient EMS was constructed by using abundant molecular brushes on composite membrane as immobilized enzyme carrier. The resulting EMS exhibited a high throughput (2.17 L/min*m2) and an interception rate (98.64%) in dynamic catalytic sulfonamide antibiotic wastewater activated with syringaldehyde mediator. Meanwhile, the removal rates of sulphapyridine and sulfamethazine were 97.20% and 94.78% under 0.14 MPa and 15 min, respectively. This efficient and scalable manufacturing strategy is of great significance and may pave a novel pathway for antibiotics wastewater treatment and recycling.


Subject(s)
Anti-Bacterial Agents , Cellulose , Anti-Bacterial Agents/pharmacology , Bacteria , Cellulose/chemistry , Graphite , Porosity , Sulfanilamide , Sulfonamides
2.
Bioresour Technol ; 356: 127311, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35569713

ABSTRACT

Laccase is a promising biocatalyst for pollutant degradation and water purification. However, laccase can only improve the stability of enzyme activity and achieve its significant catalytic effect after effective immobilization. Herein, we report a general strategy to integrate nanocellulose aerogel and laccase for high-efficiency degradation of organic pollutants. Biomass-derived functional bacterial cellulose (BC) aerogel with a nanonetwork structure and high porosity was prepared by biosynthesis, solvent replacement, and atom transfer radical polymerization (ATRP) procedures. Subsequently, a biocatalyst platform was fabricated by "coupling" ATRP-modified BC aerogel with abundant active sites with laccase through ion coordination. The results demonstrated the biocatalyst platform not only has good biological affinity, but also has high enzyme load and structural stability. Meanwhile, the degradation rates of reactive red X-3B and 2, 4-dichlorophenol reached 94.5% and 85.2% within 4 h, respectively. The strategy disclosed herein could provide a practical method for the degradation of organic pollutants.


Subject(s)
Environmental Pollutants , Water Purification , Biomass , Enzymes, Immobilized/chemistry , Laccase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...