Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Article in English | MEDLINE | ID: mdl-38844370

ABSTRACT

BACKGROUND AND PURPOSE: Considering recent iodinated contrast media (ICM) shortages, this study compared reduced ICM and standard dose CTP acquisitions, and the impact of deep learning (DL)-denoising on CTP image quality in preclinical and clinical studies. MATERIALS AND METHODS: Twelve swine underwent 9 CTP exams each, performed at combinations of 3 different X-ray (37, 67, and 127mAs) and ICM doses (10, 15, and 20mL). Clinical CTP acquisitions performed before and during the ICM shortage and protocol change (from 40 mL to 30 mL) were retrospectively included. Eleven patients with reduced ICM dose and 11 propensity-score-matched controls with standard ICM dose were included. A Residual Encoder-Decoder Convolutional-Neural-Network (RED-CNN) was trained for CTP denoising using K-space-Weighted Image Average (KWIA) filtered CTP images as the target. The standard, RED-CNN denoised, and KWIA noise-filtered images for animal and human studies were compared for quantitative SNR and qualitative image evaluation. RESULTS: The SNR of animal CTP images decreased with reductions in ICM and mAs doses. Contrast dose reduction had a greater effect on SNR than mAs reduction. Noise-filtering by KWIA and RED-CNN denoising progressively improved SNR of CTP maps, with RED-CNN resulting in the highest SNR. The SNR of clinical CTP images was generally lower with reduced ICM dose, which was improved by KWIA and RED-CNN denoising (p<0.05). Qualitative readings consistently rated RED-CNN denoised CTP as best quality, followed by KWIA and then standard CTP images. CONCLUSIONS: DL-denoising can improve image quality for low ICM CTP protocols, and could approximate standard ICM dose CTP, in addition to potentially improving image quality for low mAs acquisitions. ABBREVIATIONS: ICM=iodinated contrast media; DL=deep learning; KWIA=k-space weighted image average; LCD=low-contrast dose; SCD=standard contrast dose; RED-CNN=Residual Encoder-Decoder Convolutional Neural Network; PSNR=Peak Signal to Noise Ratio; RMSE=Root Mean Squared Error; SSIM=Structural Similarity Index.

2.
Mol Psychiatry ; 28(11): 4756-4765, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749232

ABSTRACT

Cigarette smoking has a major impact on global health and morbidity, and positron emission tomographic research has provided evidence for reduced inflammation in the human brain associated with cigarette smoking. Given the consequences of inflammatory dysfunction for health, the question of whether cigarette smoking affects neuroinflammation warrants further investigation. The goal of this project therefore was to validate and extend evidence of hypoinflammation related to smoking, and to examine the potential contribution of inflammation to clinical features of smoking. Using magnetic resonance spectroscopy, we measured levels of neurometabolites that are putative neuroinflammatory markers. N-acetyl compounds (N-acetylaspartate + N-acetylaspartylglutamate), glutamate, creatine, choline-compounds (phosphocholine + glycerophosphocholine), and myo-inositol, have all been linked to neuroinflammation, but they have not been examined as such with respect to smoking. We tested whether people who smoke cigarettes have brain levels of these metabolites consistent with decreased neuroinflammation, and whether clinical features of smoking are associated with levels of these metabolites. The dorsal anterior cingulate cortex was chosen as the region-of-interest because of previous evidence linking it to smoking and related states. Fifty-four adults who smoked daily maintained overnight smoking abstinence before testing and were compared with 37 nonsmoking participants. Among the smoking participants, we tested for associations of metabolite levels with tobacco dependence, smoking history, craving, and withdrawal. Levels of N-acetyl compounds and glutamate were higher, whereas levels of creatine and choline compounds were lower in the smoking group as compared with the nonsmoking group. In the smoking group, glutamate and creatine levels correlated negatively with tobacco dependence, and creatine correlated negatively with lifetime smoking, but none of the metabolite levels correlated with craving or withdrawal. The findings indicate a link between smoking and a hypoinflammatory state in the brain, specifically in the dorsal anterior cingulate cortex. Smoking may thereby increase vulnerability to infection and brain injury.


Subject(s)
Tobacco Use Disorder , Adult , Humans , Gyrus Cinguli/metabolism , Creatine/metabolism , Neuroinflammatory Diseases , Glutamic Acid/metabolism , Choline , Smoking
3.
NMR Biomed ; 36(4): e4817, 2023 04.
Article in English | MEDLINE | ID: mdl-35997012

ABSTRACT

Advanced imaging technologies, large-scale metabolomics, and the measurement of gene transcripts or enzyme expression all enable investigations of intermediary metabolism in human patients. Complementary information about fluxes in individual metabolic pathways may be obtained by ex vivo 13 C NMR of blood or tissue biopsies. Simple molecules such as 13 C-labeled glucose are readily administered to patients prior to surgical biopsies, and 13 C-labeled glycerol is easily administered orally to outpatients. Here, we review recent progress in practical applications of 13 C NMR to study cancer biology, the response to oxidative stress, gluconeogenesis, triglyceride synthesis in patients, as well as new insights into compartmentation of metabolism in the cytosol. The technical aspects of obtaining the sample, preparing material for analysis, and acquiring the spectra are relatively simple. This approach enables convenient, valuable, and quantitative insights into intermediary metabolism in patients.


Subject(s)
Magnetic Resonance Imaging , Metabolomics , Humans , Carbon Isotopes/chemistry , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Metabolic Networks and Pathways
4.
J Lipid Res ; 63(11): 100288, 2022 11.
Article in English | MEDLINE | ID: mdl-36162520

ABSTRACT

In mothers who are nursing their infants, increased clearance of plasma metabolites into the mammary gland may reduce ectopic lipid in the liver. No study to date has investigated the role of lactation on liver lipid synthesis in humans, and we hypothesized that lactation would modify fatty acid and glucose handling to support liver metabolism in a manner synchronized with the demands of milk production. Lactating (n = 18) and formula-feeding women (n = 10) underwent metabolic testing at 6-week postpartum to determine whether lactation modified intrahepatic triacylglycerols (IHTGs), measured by proton magnetic resonance spectroscopy. Subjects ingested oral deuterated water to measure fractional de novo lipogenesis (DNL) in VLDL-TG during fasting and during an isotope-labeled clamp at an insulin infusion rate of 10 mU/m2/min. Compared with formula-feeding women, we found that lactating women exhibited lower plasma VLDL-TG concentrations, similar IHTG content and similar contribution of DNL to total VLDL-TG production. These findings suggest that lactation lowers plasma VLDL-TG concentrations for reasons that are unrelated to IHTG and DNL. Surprisingly, we determined that the rate of appearance of nonesterified fatty acids was not related to IHTG in either group, and the expected positive association between DNL and IHTG was only significant in formula-feeding women. Further, in lactating women only, the higher the prolactin concentration, the lower the IHTG, while greater DNL strongly associated with elevations in VLDL-TG. In conclusion, we suggest that future studies should investigate the role of lactation and prolactin in liver lipid secretion and metabolism.


Subject(s)
Lactation , Lipogenesis , Female , Humans , Prolactin/metabolism , Liver/metabolism , Triglycerides/metabolism , Postpartum Period
5.
Neuroreport ; 33(7): 291-296, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35594442

ABSTRACT

OBJECTIVE: Higher volume fraction of perivascular space (PVS) has recently been reported in Parkinson's disease (PD) and related disorders. Both elevated PVS and altered levels of neurometabolites, assayed by proton magnetic resonance spectroscopy (MRS), are suspected indicators of neuroinflammation, but no published reports have concurrently examined PVS and MRS neurometabolites. METHODS: In an exploratory pilot study, we acquired multivoxel 3-T MRS using a semi-Localization by Adiabatic SElective Refocusing (sLASER) pulse-sequence (repetition time/echo time = 2810/60 ms, voxels 10 × 10 × 10 mm3) from a 2D slab sampling bilateral frontal white matter (FWM) and anterior middle cingulate cortex (aMCC). PVS maps obtained from high-resolution (0.8 × 0.8 × 0.8 mm3) T1-weighted MRI were co-registered with MRS. In each MRS voxel, PVS volume and neurometabolite levels were measured. RESULTS: Linear regression accounting for age, sex, and BMI found greater PVS volume for higher levels of choline-containing compounds (Cho; P = 0.047) in FWM and lower PVS volume for higher levels of N-acetyl compounds (NAA; P = 0.012) in aMCC. Since (putatively) higher Cho is associated with inflammation while NAA has anti-inflammatory properties, these observations add to evidence that higher PVS load is a sign of inflammation. Additionally, lower Montreal Cognitive Assessment scores were associated with lower NAA in aMCC (P = 0.002), suggesting that local neuronal dysfunction and inflammation contribute to cognitive impairment in PD. CONCLUSION: These exploratory findings indicate that co-analysis of PVS and MRS is feasible and may help elucidate the cellular and metabolic substrates of glymphatic and inflammatory processes in PD.


Subject(s)
Parkinson Disease , Aspartic Acid/metabolism , Brain/diagnostic imaging , Brain/metabolism , Creatine/metabolism , Feasibility Studies , Humans , Inflammation/metabolism , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Parkinson Disease/metabolism , Pilot Projects
6.
Brain Imaging Behav ; 16(1): 69-77, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34089460

ABSTRACT

In many patients, ostensible idiopathic attention deficit-hyperactivity disorder (ADHD) may actually stem from covert prenatal alcohol exposure (PAE), a treatment-relevant distinction. This study attempted a receiver-operator characteristic (ROC) classification of children with ADHD into those with PAE (ADHD+PAE) and those without (ADHD-PAE) using neurobehavioral instruments alongside magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) of supraventricular brain white matter. Neurobehavioral, MRS, and DTI endpoints had been suggested by prior findings. Participants included children aged 8-13 years, 23 with ADHD+PAE, 19 with familial ADHD-PAE, and 28 typically developing (TD) controls. With area-under-the-curve (AUC) >0.90, the Conners 3 Parent Rating Scale Inattention (CIn) and Hyperactivity/Impulsivity (CHp) scores and the Behavioral Regulation Index (BRI) of the Behavior Rating Inventory of Executive Function (BRIEF2) excellently distinguished the clinical groups from TD, but not from each other (AUC < 0.70). Combinations of MRS glutamate (Glu) and N-acetyl-compounds (NAA) and DTI mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) yielded "good" (AUC > 0.80) discrimination. Neuroimaging combined with CIn and BRI achieved AUC 0.72 and AUC 0.84, respectively. But neuroimaging combined with CHp yielded 14 excellent combinations with AUC ≥ 0.90 (all p < 0.0005), the best being Glu·AD·RD·CHp/(NAA·FA) (AUC 0.92, sensitivity 1.00, specificity 0.82, p < 0.0005). Using Cho in lieu of Glu yielded AUC 0.83. White-matter microstructure and metabolism may assist efforts to discriminate ADHD etiologies and to detect PAE, beyond the ability of commonly used neurobehavioral measures alone.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Prenatal Exposure Delayed Effects , White Matter , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Neuroimaging , Pregnancy , White Matter/diagnostic imaging
7.
Neuroimage Rep ; 2(1)2022 Mar.
Article in English | MEDLINE | ID: mdl-37284413

ABSTRACT

White matter alterations have been reported in children with prenatal alcohol exposure (PAE) and in children with attention deficit hyperactivity disorder (ADHD); however, as children with PAE often present with ADHD, covert PAE may have contributed to previous ADHD findings. Additionally, data regarding intracortical myelination in ADHD are lacking. Therefore, we evaluated intracortical myelination (assessed as the T1w/T2w ratio at 4 cortical ribbon levels) and myelin-related deep white matter features in children (aged 8-13 years) with ADHD with PAE (ADHD + PAE), children with familial ADHD without PAE (ADHD-PAE), and typically developing (TD) children. In widespread tracts, ADHD + PAE children showed higher mean and radial diffusivity than TD and ADHD-PAE children and lower fractional anisotropy than ADHD-PAE children; ADHD-PAE and TD children did not differ significantly. Compared to TD children, ADHD + PAE children had lower intracortical myelination only at the deepest cortical level (mainly in right insula and cingulate cortices), while ADHD-PAE children had lower intracortical myelination at multiple cortical levels (mainly in right insula, sensorimotor, and cingulate cortices); ADHD + PAE and ADHD-PAE children did not differ significantly in intracortical myelination. Considering the two ADHD groups jointly (via non-parametric combination) revealed common reductions in intracortical myelination, but no common deep white matter abnormalities. These results suggest the importance of considering PAE in ADHD studies of white matter pathology. ADHD + PAE may be associated with deeper, white matter abnormalities, while familial ADHD without PAE may be associated with more superficial, cortical abnormalities. This may be relevant to the different treatment response observed in these two ADHD etiologies.

8.
Drug Alcohol Depend ; 225: 108817, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34171826

ABSTRACT

BACKGROUND: An improved understanding of the neurodevelopmental differences between attention deficit hyperactivity disorder with and without prenatal alcohol exposure (ADHD + PAE and ADHD-PAE, respectively) is needed. Herein, we evaluated gyrification (cortical folding) in children with ADHD + PAE compared to that in children with familial ADHD-PAE and typically developing (TD) children. METHODS: ADHD + PAE (n = 37), ADHD-PAE (n = 25), and TD children (n = 27), aged 8-13 years, were compared on facial morphological, neurobehavioral, and neuroimaging assessments. Local gyrification index (LGI) maps were compared between groups using general linear modelling. Relationships between LGI and clincobehavioral parameters in children with ADHD ± PAE were evaluated using multivariate partial least squares. RESULTS: ADHD + PAE and ADHD-PAE groups showed significantly lower LGI (relative to TD) in numerous regions, overlapping in medial prefrontal, parietal, and temporo-occipital cortices (p < 0.001). However, LGI in left mid-dorsolateral prefrontal cortex was uniquely lower in the ADHD + PAE group (p < 0.001). Partial least squares analysis identified one significant latent variable (accounting for 59.3 % of the crossblock correlation, p < 0.001), reflecting a significant relationship between a profile of lower LGI in prefrontal (including left mid-dorsolateral), insular, cingulate, temporal, and parietal cortices and a clinicobehavioral profile of PAE, including a flat philtrum and upper vermillion border, lower IQ, poorer behavioral regulation scores, and greater hyperactivity/impulsivity. CONCLUSIONS: Children with ADHD + PAE uniquely demonstrate lower mid-dorsolateral LGI, with widespread lower LGI related to more severe facial dysmorphia and neurobehavioral impairments. These findings add insight into the brain bases of PAE symptoms, potentially informing more targeted ADHD treatments based on an objective differential diagnosis of ADHD + PAE vs. ADHD-PAE.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Prenatal Exposure Delayed Effects , Brain , Child , Female , Humans , Magnetic Resonance Imaging , Neuroimaging , Pregnancy
9.
Metabolomics ; 17(7): 61, 2021 06 19.
Article in English | MEDLINE | ID: mdl-34148138

ABSTRACT

INTRODUCTION: Carbon isotope tracers have been used to determine relative rates of tricarboxylic acid cycle (TCA) cycle pathways since the 1950s. Steady-state experimental data are typically fit to a single mathematical model of metabolism to determine metabolic fluxes. Whether the chosen model is appropriate for the biological system has generally not been evaluated systematically. An overly-simple model omits known pathways while an overly-complex model may produce incorrect results due to overfitting. OBJECTIVES: The objectives were to develop and study a method that systematically evaluates multiple TCA cycle mathematical models as part of the fitting process. METHODS: The problem of choosing overly-simple or overly-complex models was approached by developing software that automatically explores all possible combinations of flux through pyruvate dehydrogenase, pyruvate kinase, pyruvate carboxylase and anaplerosis at propionyl-CoA carboxylase, and equivalent pathways, all relative to TCA cycle flux. Typical TCA cycle metabolic tracer experiments that use 13C nuclear magnetic resonance for detection and quantification of 13C-enriched glutamate products were simulated and analyzed. By evaluating the multiple model fits with both the conventional sum-of-squares residual error (SSRE) and the Akaike Information Criterion (AIC), the software helps the investigator understand the interaction between model complexity and goodness of fit. RESULTS: When fitting alternative models of the TCA cycle metabolism, the SSRE may identify more than one model that fits the data well. Among those models, the AIC provides guidance as to which is the simplest of the candidate models is sufficient to describe the observed data. However under some conditions, AIC used alone inappropriately discriminates against necessary metabolic complexity. CONCLUSION: In combination, the SSRE and AIC help the investigator identify the model that best describes the metabolism of a biological system.


Subject(s)
Carbon , Citric Acid Cycle , Carbon Isotopes , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
10.
Neurotox Res ; 39(4): 1054-1075, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33751467

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD) is common in patients with (ADHD+PAE) and without (ADHD-PAE) prenatal alcohol exposure (PAE). Many patients diagnosed with idiopathic ADHD actually have covert PAE, a treatment-relevant distinction. To improve differential diagnosis, we sought to identify brain differences between ADHD+PAE and ADHD-PAE using neurobehavioral, magnetic resonance spectroscopy, and diffusion tensor imaging metrics that had shown promise in past research. Children 8-13 were recruited in three groups: 23 ADHD+PAE, 19 familial ADHD-PAE, and 28 typically developing controls (TD). Neurobehavioral instruments included the Conners 3 Parent Behavior Rating Scale and the Delis-Kaplan Executive Function System (D-KEFS). Two dimensional magnetic resonance spectroscopic imaging was acquired from supraventricular white matter to measure N-acetylaspartate compounds, glutamate, creatine + phosphocreatine (creatine), and choline-compounds (choline). Whole brain diffusion tensor imaging was acquired and used to to calculate fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from the same superventricular white matter regions that produced magnetic resonance spectroscopy data. The Conners 3 Parent Hyperactivity/Impulsivity Score, glutamate, mean diffusivity, axial diffusivity, and radial diffusivity were all higher in ADHD+PAE than ADHD-PAE. Glutamate was lower in ADHD-PAE than TD. Within ADHD+PAE, inferior performance on the D-KEFS Tower Test correlated with higher neurometabolite levels. These findings suggest white matter differences between the PAE and familial etiologies of ADHD. Abnormalities detected by magnetic resonance spectroscopy and diffusion tensor imaging co-localize in supraventricular white matter and are relevant to executive function symptoms of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Fetal Alcohol Spectrum Disorders/diagnostic imaging , Neuroimaging/methods , White Matter/diagnostic imaging , Adolescent , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/psychology , Brain/metabolism , Child , Diffusion Tensor Imaging/methods , Female , Fetal Alcohol Spectrum Disorders/metabolism , Fetal Alcohol Spectrum Disorders/psychology , Glutamic Acid/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Male , Pregnancy , White Matter/metabolism
11.
Anal Sens ; 1(4): 196-202, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35693130

ABSTRACT

The interplay between glycolysis and gluconeogenesis is central to carbohydrate metabolism. Here, we describe novel methods to assess carbohydrate metabolism using [13C]-probes derived from glycerate, a molecule whose metabolic fate in mammals remains underexplored. Isotope-based studies were conducted via NMR and mass spectrometry analyses of freeze-clamped liver tissue extracts after [2,3-13C2]glycerate infusion. The ex vivo investigations were correlated with in vivo measurements using hyperpolarized [1-13C]glycerate. Application of [13C]glycerate to N-nitrosodiethylamine (DEN)-treated rats provided further assessments of intermediary carbohydrate metabolism in hepatocellular carcinoma. This method afforded direct analyses of control versus DEN tissues, and altered ratios of 13C metabolic products as well as unique glycolysis intermediates were observed in the DEN liver/tumor. Isotopomer studies showed increased glycerate uptake and altered carbohydrate metabolism in the DEN rats.

12.
Brain Imaging Behav ; 15(2): 504-525, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32797399

ABSTRACT

Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Child , Humans , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy
13.
IEEE Trans Med Imaging ; 39(12): 3879-3890, 2020 12.
Article in English | MEDLINE | ID: mdl-32746131

ABSTRACT

CTP (Computed Tomography Perfusion) is widely used in clinical practice for the evaluation of cerebrovascular disorders. However, CTP involves high radiation dose (≥~200mGy) as the X-ray source remains continuously on during the passage of contrast media. The purpose of this study is to present a low dose CTP technique termed K-space Weighted Image Average (KWIA) using a novel projection view-shared averaging algorithm with reduced tube current. KWIA takes advantage of k-space signal property that the image contrast is primarily determined by the k-space center with low spatial frequencies and oversampled projections. KWIA divides each 2D Fourier transform (FT) or k-space CTP data into multiple rings. The outer rings are averaged with neighboring time frames to achieve adequate signal-to-noise ratio (SNR), while the center region of k-space remains unchanged to preserve high temporal resolution. Reduced dose sinogram data were simulated by adding Poisson distributed noise with zero mean on digital phantom and clinical CTP scans. A physical CTP phantom study was also performed with different X-ray tube currents. The sinogram data with simulated and real low doses were then reconstructed with KWIA, and compared with those reconstructed by standard filtered back projection (FBP) and simultaneous algebraic reconstruction with regularization of total variation (SART-TV). Evaluation of image quality and perfusion metrics using parameters including SNR, CNR (contrast-to-noise ratio), AUC (area-under-the-curve), and CBF (cerebral blood flow) demonstrated that KWIA is able to preserve the image quality, spatial and temporal resolution, as well as the accuracy of perfusion quantification of CTP scans with considerable (50-75%) dose-savings.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Perfusion , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Signal-To-Noise Ratio
14.
J Psychiatry Neurosci ; 44(6): 386-394, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31199104

ABSTRACT

Background: The therapeutic mechanism of repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant depression (TRD) may involve modulation of γ-aminobutyric acid (GABA) levels. We used proton magnetic resonance spectroscopy (MRS) to assess changes in GABA levels at the site of rTMS in the left dorsolateral prefrontal cortex (DLPFC). Methods: In 26 adults with TRD, we used Mescher­Garwood point-resolved spectroscopy (MEGA-PRESS) spectral-editing MRS to measure GABA in the left DLPFC before and after standard clinical treatment with rTMS. All participants but 1 were medicated, including 12 patients on GABA agonist agents. Results: Mean GABA in the DLPFC increased 10.0% (p = 0.017) post-rTMS in the overall sample. As well, GABA increased significantly in rTMS responders (n = 12; 23.6%, p = 0.015) but not in nonresponders (n = 14; 4.1%, p = not significant). Changes in GABA were not significantly affected by GABAergic agonists, but clinical response was less frequent (p = 0.005) and weaker (p = 0.035) in the 12 participants who were receiving GABA agonists concomitant with rTMS treatment. Limitations: This study had an open-label design in a population receiving naturalistic treatment. Conclusion: Treatment using rTMS was associated with increases in GABA levels at the stimulation site in the left DLPFC, and the degree of GABA change was related to clinical improvement. Participants receiving concomitant treatment with a GABA agonist were less likely to respond to rTMS. These findings were consistent with earlier studies showing the effects of rTMS on GABA levels and support a GABAergic model of depression.


Subject(s)
Depressive Disorder, Major/therapy , Depressive Disorder, Treatment-Resistant/therapy , Prefrontal Cortex/metabolism , Transcranial Magnetic Stimulation , gamma-Aminobutyric Acid/metabolism , Adult , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/metabolism , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/metabolism , Female , Humans , Male , Middle Aged , Prefrontal Cortex/diagnostic imaging , Proton Magnetic Resonance Spectroscopy , Young Adult
15.
J Neurovirol ; 25(3): 342-353, 2019 06.
Article in English | MEDLINE | ID: mdl-30767174

ABSTRACT

Growing evidence points to persistent neurological injury in chronic HIV infection. It remains unclear whether chronically HIV-infected individuals on combined antiretroviral therapy (cART) develop progressive brain injury and impaired neurocognitive function despite successful viral suppression and immunological restoration. In a longitudinal neuroimaging study for the HIV Neuroimaging Consortium (HIVNC), we used tensor-based morphometry to map the annual rate of change of regional brain volumes (mean time interval 1.0 ± 0.5 yrs), in 155 chronically infected and treated HIV+ participants (mean age 48.0 ± 8.9 years; 83.9% male) . We tested for associations between rates of brain tissue loss and clinical measures of infection severity (nadir or baseline CD4+ cell count and baseline HIV plasma RNA concentration), HIV duration, cART CNS penetration-effectiveness scores, age, as well as change in AIDS Dementia Complex stage. We found significant brain tissue loss across HIV+ participants, including those neuro-asymptomatic with undetectable viral loads, largely localized to subcortical regions. Measures of disease severity, age, and neurocognitive decline were associated with greater atrophy. Chronically HIV-infected and treated individuals may undergo progressive brain tissue loss despite stable and effective cART, which may contribute to neurocognitive decline. Understanding neurological complications of chronic infection and identifying factors associated with atrophy may help inform strategies to maintain brain health in people living with HIV.


Subject(s)
Brain/pathology , HIV Infections/pathology , Adult , Anti-Retroviral Agents/therapeutic use , Atrophy/pathology , Atrophy/virology , Diffusion Tensor Imaging , Female , HIV Infections/drug therapy , Humans , Male , Middle Aged
16.
Int J Neuropsychopharmacol ; 22(1): 1-9, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29788422

ABSTRACT

Background: Methamphetamine induces neuronal N-acetyl-aspartate synthesis in preclinical studies. In a preliminary human proton magnetic resonance spectroscopic imaging investigation, we also observed that N-acetyl-aspartate+N-acetyl-aspartyl-glutamate in right inferior frontal cortex correlated with years of heavy methamphetamine abuse. In the same brain region, glutamate+glutamine is lower in methamphetamine users than in controls and is negatively correlated with depression. N-acetyl and glutamatergic neurochemistries therefore merit further investigation in methamphetamine abuse and the associated mood symptoms. Methods: Magnetic resonance spectroscopic imaging was used to measure N-acetyl-aspartate+N-acetyl-aspartyl-glutamate and glutamate+glutamine in bilateral inferior frontal cortex and insula, a neighboring perisylvian region affected by methamphetamine, of 45 abstinent methamphetamine-dependent and 45 healthy control participants. Regional neurometabolite levels were tested for group differences and associations with duration of heavy methamphetamine use, depressive symptoms, and state anxiety. Results: In right inferior frontal cortex, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate correlated with years of heavy methamphetamine use (r = +0.45); glutamate+glutamine was lower in methamphetamine users than in controls (9.3%) and correlated negatively with depressive symptoms (r = -0.44). In left insula, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate was 9.1% higher in methamphetamine users than controls. In right insula, glutamate+glutamine was 12.3% lower in methamphetamine users than controls and correlated negatively with depressive symptoms (r = -0.51) and state anxiety (r = -0.47). Conclusions: The inferior frontal cortex and insula show methamphetamine-related abnormalities, consistent with prior observations of increased cortical N-acetyl-aspartate in methamphetamine-exposed animal models and associations between cortical glutamate and mood in human methamphetamine users.


Subject(s)
Amphetamine-Related Disorders/diagnostic imaging , Amphetamine-Related Disorders/metabolism , Aspartic Acid/analogs & derivatives , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Adolescent , Adult , Amphetamine-Related Disorders/psychology , Anxiety/diagnostic imaging , Anxiety/metabolism , Aspartic Acid/metabolism , Central Nervous System Stimulants/adverse effects , Cerebral Cortex/drug effects , Cross-Sectional Studies , Depression/diagnostic imaging , Depression/metabolism , Female , Glutamine/metabolism , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Methamphetamine/adverse effects , Middle Aged , Young Adult
17.
J Neurotrauma ; 35(14): 1637-1645, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29649959

ABSTRACT

Diffuse axonal injury contributes to the long-term functional morbidity observed after pediatric moderate/severe traumatic brain injury (msTBI). Whole-brain proton magnetic resonance echo-planar spectroscopic imaging was used to measure the neurometabolite levels in the brain to delineate the course of disruption/repair during the first year post-msTBI. The association between metabolite biomarkers and functional measures (cognitive functioning and corpus callosum [CC] function assessed by interhemispheric transfer time [IHTT] using an event related potential paradigm) was also explored. Pediatric patients with msTBI underwent assessments at two times (post-acutely at a mean of three months post-injury, n = 31, and chronically at a mean of 16 months post-injury, n = 24). Healthy controls also underwent two evaluations, approximately 12 months apart. Post-acutely, in patients with msTBI, there were elevations in choline (Cho; marker for inflammation and/or altered membrane metabolism) in all four brain lobes and the CC and decreases in N-acetylaspartate (NAA; marker for neuronal and axonal integrity) in the CC compared with controls, all of which normalized by the chronic time point. Subgroups of TBI showed variable patterns chronically. Patients with slow IHTT had lower lobar Cho chronically than those with normal IHTT; they also did not show normalization in CC NAA whereas those with normal IHTT showed significantly higher levels of CC NAA relative to controls. In the normal IHTT group only, chronic CC Cho and NAA together explained 70% of the variance in long-term cognitive functioning. MR based whole brain metabolic evaluations show different patterns of neurochemistry after msTBI in two subgroups with different outcomes. There is a dynamic relationship between prolonged inflammatory responses to brain damage, reparative processes/remyelination, and subsequent neurobehavioral outcomes. Multimodal studies allow us to test hypotheses about degenerative and reparative processes in patient groups that have divergent functional outcome, with the ultimate goal of developing targeted therapeutic agents.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Diffuse Axonal Injury/diagnostic imaging , Diffuse Axonal Injury/metabolism , Magnetic Resonance Spectroscopy/methods , Adolescent , Brain Injuries, Traumatic/complications , Child , Diffuse Axonal Injury/etiology , Female , Humans , Male , Recovery of Function
18.
Curr Metabolomics ; 6(3): 176-187, 2018.
Article in English | MEDLINE | ID: mdl-31745452

ABSTRACT

Increasingly sophisticated instrumentation for chemical separations and identification has facilitated rapid advancements in our understanding of the metabolome. Since many analyses are performed using either mass spectroscopy (MS) or nuclear magnetic resonance (NMR) spectroscopy, the spin ½ stable 13C isotope is now widely used as a metabolic tracer. There is strong interest in quantitative analysis of metabolic flux through pathways in vivo, particularly in human patients. Although instrumentation advances and scientific interests in metabolism are increasing in parallel, a practical and rational design of a 13C tracer study can be challenging. Prior to planning the details of a tracer experiment, is it important to consider whether the analytical results will be sensitive to flux through the pathways of interest. Here, we briefly summarize the various approaches that have been used to design carbon tracer experiments, outline the sources of complexity, and illustrate the use of a software tool, tcaSIM, to aid in the experimental design of both MS and NMR data in complex systems including patients.

19.
Neuropsychopharmacology ; 42(12): 2414-2422, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28409563

ABSTRACT

Cognitive-behavioral therapy (CBT) is effective for pediatric obsessive-compulsive disorder (OCD), but non-response is common. Brain glutamate (Glu) signaling may contribute to OCD pathophysiology and moderate CBT outcomes. We assessed whether Glu measured with magnetic resonance spectroscopy (MRS) was associated with OCD and/or CBT response. Youths aged 7-17 years with DSM-IV OCD and typically developing controls underwent 3 T proton echo-planar spectroscopic imaging (PEPSI) MRS scans of pregenual anterior cingulate cortex (pACC) and ventral posterior cingulate cortex (vPCC)-regions possibly affected by OCD-at baseline. Controls returned for re-scan after 8 weeks. OCD youth-in a randomized rater-blinded trial-were re-scanned after 12-14 weeks of CBT or after 8 weeks of minimal-contact waitlist; waitlist participants underwent a third scan after crossover to 12-14 weeks of CBT. Forty-nine children with OCD (mean age 12.2±2.9 years) and 29 controls (13.2±2.2 years) provided at least one MRS scan. At baseline, Glu did not differ significantly between OCD and controls in pACC or vPCC. Within controls, Glu was stable from scan-to-scan. Within OCD subjects, a treatment-by-scan interaction (p=0.034) was observed, driven by pACC Glu dropping 19.5% from scan-to-scan for patients randomized to CBT, with minor increases (3.8%) for waitlist participants. The combined OCD participants (CBT-only plus waitlist-CBT) also showed a 16.2% (p=0.004) post-CBT decrease in pACC Glu. In the combined OCD group, within vPCC, lower pre-CBT Glu predicted greater post-CBT improvement in symptoms (CY-BOCS; r=0.81, p=0.00025). Glu may be involved in the pathophysiology of OCD and may moderate response to CBT.


Subject(s)
Cognitive Behavioral Therapy/trends , Glutamic Acid/metabolism , Obsessive-Compulsive Disorder/metabolism , Obsessive-Compulsive Disorder/therapy , Adolescent , Child , Cognitive Behavioral Therapy/methods , Cross-Over Studies , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/trends , Magnetic Resonance Spectroscopy/methods , Male , Obsessive-Compulsive Disorder/diagnostic imaging , Treatment Outcome , Waiting Lists
20.
Endocrinology ; 158(4): 936-949, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28324109

ABSTRACT

We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (ß-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid ß1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Diet, Ketogenic , Glucose Transporter Type 3/metabolism , Seizures/diet therapy , Social Behavior , Animals , Brain/physiopathology , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Electroencephalography , Female , Glucose/metabolism , Glucose Transporter Type 3/genetics , Male , Memory/physiology , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Seizures/metabolism , Seizures/physiopathology , Sex Factors , Spatial Learning/physiology , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...