Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Curr Psychiatry Rep ; 26(5): 229-239, 2024 05.
Article in English | MEDLINE | ID: mdl-38700836

ABSTRACT

PURPOSE OF REVIEW: The goal of this paper was to highlight the degree to which sleep, behavioral health, and leader involvement were interrelated using data from militaries in five English-speaking countries: Australia, Canada, New Zealand, the UK, and the United States. RECENT FINDINGS: Many service members reported sleeping fewer than the recommended 7 h/night: 34.9%, 67.2%, and 77.2% of respondents from New Zealand, Canada, and the United States, respectively. Countries reporting shorter sleep duration also reported fewer insomnia-related difficulties, likely reflecting higher sleep pressure from chronic sleep loss. Across all countries, sleep problems were positively correlated with behavioral health symptoms. Importantly, leader promotion of healthy sleep was positively correlated with more sleep and negatively correlated with sleep problems and behavioral health symptoms. Insufficient sleep in the military is ubiquitous, with serious implications for the behavioral health and functioning of service members. Leaders should attend to these risks and examine ways to promote healthy sleep in service members.


Subject(s)
Military Personnel , Humans , Military Personnel/statistics & numerical data , Military Personnel/psychology , New Zealand , United States/epidemiology , Australia/epidemiology , Canada/epidemiology , United Kingdom/epidemiology , Sleep Deprivation , Leadership
2.
Neurobiol Learn Mem ; 180: 107411, 2021 04.
Article in English | MEDLINE | ID: mdl-33609737

ABSTRACT

Emotional experiences create durable memory traces in the brain, especially when these memories are consolidated in the presence of stress hormones such as cortisol. Although some research suggests cortisol elevation can increase long-term memory for emotional relative to neutral content, the impact of stress and cortisol on the consolidation of emotional and neutral aspects of memories when they are part of the same experience remains unknown. Here, after encoding complex scenes consisting of negative or neutral objects placed on neutral backgrounds, participants were exposed to a psychosocial stressor (or matched control condition) in order to examine the impact of stress and cortisol on early consolidation processes. The next day, once cortisol levels had returned to baseline, specific and gist recognition memory were tested separately for objects and backgrounds. Results indicate that while there was a numerical increase in memory for negative objects in the stress group, higher endogenous cortisol concentrations were specifically associated with decreased memory for the neutral backgrounds originally paired with negative objects. Moreover, across all participants, cortisol levels were positively correlated with the magnitude of the emotional memory trade-off effect. Specifically, while memory for negative objects was preserved, elevated cortisol during early consolidation was associated with decreased memory for neutral backgrounds that were initially paired with negative objects. These memory effects were observed in both the stricter specific measure of memory and the less conservative measure of gist memory. Together, these findings suggest that rather than influencing all aspects of an experience similarly, elevated cortisol during early consolidation selectively preserves what is most emotionally salient and adaptive to remember while allowing the loss of memory for less important neutral information over time.


Subject(s)
Emotions , Hydrocortisone/metabolism , Memory Consolidation/physiology , Memory/physiology , Recognition, Psychology/physiology , Stress, Psychological/physiopathology , Adolescent , Female , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary-Adrenal System/metabolism , Stress, Psychological/metabolism , Young Adult
3.
Psychol Rep ; 124(1): 210-226, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32000581

ABSTRACT

OBJECTIVE: Individuals vary in response to sleep loss: some individuals are "vulnerable" and demonstrate cognitive decrements following insufficient sleep, while others are "resistant" and maintain baseline cognitive capability. Physiological markers (e.g., genetic polymorphisms) have been identified that can predict relative vulnerability. However, a quick, cost-effective, and feasible subjective predictor tool has not been developed. The objective of the present study was to determine whether two factors-"subjective sleep need" and "subjective resilience"-predict cognitive performance following sleep deprivation. METHODS: Twenty-seven healthy, sleep-satiated young adults participated. These individuals were screened for sleep disorders, comorbidities, and erratic sleep schedules. Prior to 40 hours of in-laboratory total sleep deprivation, participants were questioned on their subjective sleep need and completed a validated resilience scale. During and after sleep deprivation, participants completed a 5-minute psychomotor vigilance test every 2 hours. RESULTS: Both subjective resilience and subjective sleep need individually failed to predict performance during sleep loss. However, these two measures interacted to predict performance. Individuals with low resilience and low sleep need had poorer cognitive performance during sleep loss. However, in individuals with medium or high resilience, psychomotor vigilance test performance was not predicted by subjective sleep need. Higher resilience may be protective against sleep loss-related neurobehavioral impairments in the context of subjective sleep need. CONCLUSIONS: Following sleep loss (and recovery sleep), trait resilient individuals may outperform those with lower resiliency on real-world tasks that require continuous attention. Future studies should determine whether the present findings generalize to other, operationally relevant tasks and additional cognitive domains.


Subject(s)
Adaptation, Psychological , Cognition/physiology , Sleep Deprivation/psychology , Sleep/physiology , Adolescent , Adult , Female , Humans , Male , Psychomotor Performance , Self Report , Sleep Deprivation/physiopathology , Wakefulness , Young Adult
4.
Sleep ; 43(8)2020 08 12.
Article in English | MEDLINE | ID: mdl-32016401

ABSTRACT

STUDY OBJECTIVES: The purpose of the present study was to assess the extent to which sleep extension followed by sleep deprivation impacts performance on an attentional task with varying cognitive and attentional demands that influence decisions. METHODS: Task performance was assessed at baseline, after 1 week of sleep extension, and after 40 h of total sleep deprivation. RESULTS: One week of sleep extension resulted in improved performance, particularly for high cognitive load decisions regardless of the emotional salience of attentional distractors. Those who extended sleep the most relative to their habitual sleep duration showed the greatest improvement in general performance during sleep extension. However, a higher percentage of time spent in slow-wave sleep (SWS) on the last night of the sleep extension phase was negatively correlated with performance on more difficult high cognitive load items, possibly reflecting a relatively higher level of residual sleep need. Sleep deprivation generally resulted in impaired performance, with a nonsignificant trend toward greater performance decrements in the presence of emotionally salient distractors. Performance overall, but specifically for high cognitive load decisions, during total sleep deprivation was negatively correlated with longer sleep and higher SWS percentage during subsequent recovery sleep. CONCLUSIONS: The present findings suggest two possibilities: those who performed relatively poorly during sleep deprivation were more vulnerable because (1) they utilized mental resources (i.e. accrued sleep debt) at a relatively faster rate during wakefulness, and/or (2) they failed to "pay down" pre-study sleep debt to the same extent as better-performing participants during the preceding sleep extension phase.


Subject(s)
Sleep Deprivation , Sleep , Attention , Cognition , Humans , Wakefulness
5.
Hippocampus ; 30(8): 829-841, 2020 08.
Article in English | MEDLINE | ID: mdl-31313866

ABSTRACT

Sleep and stress independently enhance emotional memory consolidation. In particular, theta oscillations (4-7 Hz) during rapid eye movement (REM) sleep increase coherence in an emotional memory network (i.e., hippocampus, amygdala, and prefrontal cortex) and enhance emotional memory. However, little is known about how stress during learning might interact with subsequent REM theta activity to affect emotional memory. In the current study, we examined whether the relationship between REM theta activity and emotional memory differs as a function of pre-encoding stress exposure and reactivity. Participants underwent a psychosocial stressor (the Trier Social Stress Task; n = 32) or a comparable control task (n = 32) prior to encoding. Task-evoked cortisol reactivity was assessed by salivary cortisol rise from pre- to post-stressor, and participants in the stress condition were additionally categorized as high or low cortisol responders via a median split. During incidental encoding, participants studied 150 line drawings of negative, neutral, and positive images, followed by the complete color photo. All participants then slept overnight in the lab with polysomnographic recording. The next day, they were given a surprise recognition memory task. Results showed that memory was better for emotional relative to neutral information. Critically, these findings were observed only in the stress condition. No emotional memory benefit was observed in the control condition. In stressed participants, REM theta power significantly predicted memory for emotional information, specifically for positive items. This relationship was observed only in high cortisol responders. For low responders and controls, there was no relationship between REM theta and memory of any valence. These findings provide evidence that elevated stress at encoding, and accompanying changes in neuromodulators such as cortisol, may interact with theta activity during REM sleep to promote selective consolidation of emotional information.


Subject(s)
Emotions/physiology , Memory Consolidation/physiology , Sleep, REM/physiology , Stress, Psychological , Adolescent , Adult , Female , Humans , Male , Theta Rhythm/physiology , Young Adult
6.
Cogn Affect Behav Neurosci ; 19(6): 1391-1403, 2019 12.
Article in English | MEDLINE | ID: mdl-31468500

ABSTRACT

Strong evidence suggests that sleep plays a role in memory consolidation, which involves both stabilizing memory into long-term storage as well as integrating new information into existing stores. The current study investigated consolidation, across a day of wakefulness or night of sleep, of emotional and neutral directly learned visual paired associates (A-B/B-C pairs) as well as formation of memory for relational pairs formed via overlapping learned components (A-C pairs). Participants learned 40 negative and 40 neutral face-object pairs followed by a baseline test in session 1 either in the morning or evening. They then spent a 12-hour retention period during which participants either went about their normal day or spent the night in the sleep lab. During session 2, participants completed a surprise test to assess their memory for relational pairs (A-C) as well as memory for direct associates (A-B/B-C). As hypothesized, the results demonstrated that a 12-hour retention period predominantly spent asleep, compared to awake, benefited memory for both relational and direct associative memory. However, contrary to the hypothesis that emotional salience would promote preferential consolidation, sleep appeared to benefit both negative and neutral information similarly for direct associative and relational memories, suggesting that sleep may interact with other factors affecting encoding (e.g., depth of encoding) to benefit direct and relational associative memory. As one of the few studies examining the role of nocturnal sleep and emotion on both direct and relational associative memory, our findings suggest key insights into how overnight sleep consolidates these different forms of memory.


Subject(s)
Association Learning , Healthy Volunteers/psychology , Memory Consolidation , Sleep , Wakefulness , Adolescent , Adult , Emotions , Female , Humans , Male , Photic Stimulation , Young Adult
7.
Sleep ; 42(8)2019 08 01.
Article in English | MEDLINE | ID: mdl-31390041
8.
Neurobiol Learn Mem ; 160: 48-57, 2019 04.
Article in English | MEDLINE | ID: mdl-29906574

ABSTRACT

Information that is the most salient and important for future use is preferentially preserved through active processing during sleep. Emotional salience is a biologically adaptive cue that influences episodic memory processing through interactions between amygdalar and hippocampal activity. However, other cues that influence the importance of information, such as the explicit direction to remember or forget, interact with the inherent salience of information to determine its fate in memory. It is unknown how sleep-based processes selectively consolidate this complex information. The current study examined the development of memory for emotional and neutral information that was either cued to-be-remembered (TBR) or to-be-forgotten (TBF) across a daytime period including either napping or wakefulness. Baseline memory revealed dominance of the TBR cue, regardless of emotional salience. As anticipated, napping was found to preserve memory overall significantly better than remaining awake. Furthermore, we observed a trending interaction indicating that napping specifically enhanced the discrimination between the most salient information (negative TBR items) over other information. We found that memory for negative items was positively associated with the percentage of SWS obtained during a nap. Furthermore, the magnitude of the difference in memory between negative TBR items and negative TBF items increased with greater sleep spindle activity. Taken together, our results suggest that although the cue to actively remember or intentionally forget initially wins out, active processes during sleep facilitate the competition between salience cues to promote the most salient information in memory.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/physiology , Cues , Emotions/physiology , Memory Consolidation/physiology , Sleep Stages/physiology , Wakefulness/physiology , Adolescent , Adult , Female , Humans , Male , Polysomnography , Young Adult
9.
Neurobiol Aging ; 68: 34-47, 2018 08.
Article in English | MEDLINE | ID: mdl-29704647

ABSTRACT

Sleep preferentially preserves aspects of memory that are most salient and valuable to remember at the expense of memory for less relevant details. Daytime naps and nocturnal sleep enhance this emotional memory trade-off effect, with memory for emotional components correlated with slow-wave sleep during the day and rapid eye movement sleep overnight. However, these studies have primarily sampled from young adult populations. Sleep and memory are altered by middle age, and the aim of the present study was to examine how age affects sleep-based mechanisms of emotional memory prioritization, using a daytime nap protocol to compare young to middle-aged adults. In both age groups, a nap soon after encoding scenes that contained a negative or neutral object on a neutral background led to superior retention of emotional object memory at the expense of memory for the related backgrounds. Sleep spindle activity during slow-wave sleep was related to memory for this emotionally salient information across the age range.


Subject(s)
Aging/physiology , Aging/psychology , Emotions/physiology , Memory Consolidation/physiology , Memory/physiology , Sleep Stages/physiology , Sleep/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Retention, Psychology/physiology , Young Adult
11.
Cogn Affect Behav Neurosci ; 16(6): 1150-1163, 2016 12.
Article in English | MEDLINE | ID: mdl-27670288

ABSTRACT

Relational memories are formed from shared components between directly learned memory associations, flexibly linking learned information to better inform future judgments. Sleep has been found to facilitate both direct associative and relational memories. However, the impact of incorporating emotionally salient information into learned material and the interaction of emotional salience and sleep in facilitating both types of memory is unknown. Participants encoded two sets of picture pairs, with either emotionally negative or neutral objects paired with neutral faces. The same objects were present in both sets, paired with two different faces across the sets. Baseline memory for these directly paired associates was tested immediately after encoding, followed by either a 90-min nap opportunity or wakefulness. Five hours after learning, a surprise test assessed relational memory, the indirect association between two faces paired with the same object during encoding, followed by a retest of direct associative memory. Overall, negative information was remembered better than neutral for directly learned pairs. A nap facilitated both preservation of direct associative memories and formation of relational memories, compared to remaining awake. Interestingly, however, this sleep benefit was observed specifically for neutral directly paired associates, while both neutral and negative relational associations benefitted from a nap. Finally, REM sleep played opposing roles in neutral direct and relational associative memory formation, with more REM sleep leading to forgetting of direct associations but promoting relational associations, suggesting that, while not benefitting memory consolidation for directly learned details, REM sleep may foster the memory reorganization needed for relational memory.


Subject(s)
Association Learning/physiology , Emotions/physiology , Memory/physiology , Pattern Recognition, Visual/physiology , Sleep/physiology , Analysis of Variance , Female , Humans , Male , Neuropsychological Tests , Photic Stimulation , Surveys and Questionnaires , Time Factors , Young Adult
12.
Learn Mem ; 23(1): 46-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26670187

ABSTRACT

Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false memory task) and memory was tested 24 h later. Stress decreased recognition of studied words, while increasing false recognition of semantically related lure words. Moreover, while control subjects remembered true and false words equivalently, stressed subjects remembered more false than true words. These results suggest that stress supports gist memory formation in the DRM task, perhaps by hindering detail-specific processing in the hippocampus.


Subject(s)
Memory Disorders/etiology , Mental Recall/physiology , Stress, Psychological/complications , Adolescent , Adult , Analysis of Variance , Area Under Curve , Emotions , Female , Humans , Hydrocortisone/metabolism , Male , Recognition, Psychology , Saliva/metabolism , Verbal Learning , Word Association Tests , Young Adult
13.
Emotion ; 15(2): 176-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25706830

ABSTRACT

After information is encoded into memory, it undergoes an offline period of consolidation that occurs optimally during sleep. The consolidation process not only solidifies memories, but also selectively preserves aspects of experience that are emotionally salient and relevant for future use. Here, we provide evidence that an afternoon nap is sufficient to trigger preferential memory for emotional information contained in complex scenes. Selective memory for negative emotional information was enhanced after a nap compared with wakefulness in 2 control conditions designed to carefully address interference and time-of-day confounds. Although prior evidence has connected negative emotional memory formation to REM sleep physiology, we found that non-REM delta activity and the amount of slow wave sleep (SWS) in the nap were robustly related to the selective consolidation of negative information. These findings suggest that the mechanisms underlying memory consolidation benefits associated with napping and nighttime sleep are not always the same. Finally, we provide preliminary evidence that the magnitude of the emotional memory benefit conferred by sleep is equivalent following a nap and a full night of sleep, suggesting that selective emotional remembering can be economically achieved by taking a nap.


Subject(s)
Emotions , Memory , Sleep , Adult , Female , Humans , Male , Polysomnography , Sleep, REM , Time Factors
14.
Curr Top Behav Neurosci ; 25: 269-306, 2015.
Article in English | MEDLINE | ID: mdl-25227928

ABSTRACT

Through a variety of methods, researchers have begun unraveling the mystery of why humans spend one-third of their lives asleep. Though sleep likely serves multiple functions, it has become clear that the sleeping brain offers an ideal environment for solidifying newly learned information in the brain. Sleep , which comprises a complex collection of brain states, supports the consolidation of many different types of information. It not only promotes learning and memory stabilization, but also memory reorganization that can lead to various forms of insightful behavior. As this chapter will describe, research provides ample support for these crucial cognitive functions of sleep . Focusing on the declarative memory system in humans, we review the literature regarding the benefits of sleep for both neutral and emotionally salient declarative memory. Finally, we discuss the literature regarding the impact of sleep on emotion regulation.


Subject(s)
Brain Waves/physiology , Emotions/physiology , Memory/physiology , Sleep Deprivation/physiopathology , Sleep/physiology , Humans
15.
Neurobiol Learn Mem ; 114: 155-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24952130

ABSTRACT

While sleep's role in emotional memory processing is gaining increasing support, its effect on emotion regulation remains equivocal. Moreover, little is known about the link between emotional reactivity at the time of encoding and subsequent sleep-based emotional memory consolidation. This study examined whether sleep would potentiate, protect, or depotentiate measures of heart rate and skin conductance in response to scenes containing emotional and neutral objects, and assessed how these measures of reactivity would predict subsequent memory for the objects across delays of sleep and wake. Heart rate deceleration (HRD) and skin conductance response (SCR) data were collected at encoding and recognition. Although HRD and SCR reactivity to objects were depotentiated after a sleep-filled delay, they remained unchanged after a delay containing wakefulness. Moreover, increased arousal responses to negative scenes at encoding as measured by HRD and SCR responses were positively correlated with subsequent memory for the negative objects of scenes, but only in the sleep group. This suggests that larger reactions to negative images at the time of encoding set the stage for the preferential consolidation of these images during a night of sleep. Although arousal responses are often thought to account for emotional enhancement in long-term memory, these findings suggest that both an arousal response at encoding and a subsequent period of sleep are needed to optimize selective emotional memory consolidation.


Subject(s)
Arousal/physiology , Emotions/physiology , Memory/physiology , Sleep/physiology , Female , Galvanic Skin Response/physiology , Heart Rate/physiology , Humans , Male
16.
Neurobiol Learn Mem ; 98(2): 188-96, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22732649

ABSTRACT

While it is now generally accepted that sleep facilitates the processing of newly acquired declarative information, questions still remain as to the type and length of sleep necessary to best benefit declarative memories. A better understanding could lend support in one direction or another as to the much-debated role of sleep, be it passive, permissive, or active, in memory processing. The present study employed a napping paradigm and compared performance on a bimodal paired-associates task of those who obtained a 10-min nap, containing only Stages 1 and 2 sleep, to those whose nap contained slow-wave sleep (SWS) and rapid eye movement (REM) sleep (60-min nap), as well as to subjects who remained awake. Measurements were obtained for baseline performance at training, after a sleep/no sleep interval for short-term retention, after a subsequent stimulus-related interference task, and again after a weeklong retention period. While all groups learned the information similarly, both nap groups performed better than the Wake group when examining short-term retention, approximately 1.5h after training (10-min p=.052, 60-min p=.002). However, performance benefits seen in the 10-min nap group proved to be temporary. Performance after a stimulus-related interference task revealed significantly better memory retention in the 60-min nap group, with interference disrupting the memory trace far less than both the Wake and 10-min nap groups (p<.001, p=.006, respectively). After a weeklong retention period, sleep's benefit to memory persisted in the 60-min nap group, with performance significantly greater than both the Wake and 10-min nap groups (p<.001, p=.004, respectively). It is our conclusion that SWS, obtained only by those in the 60-min nap group, served to actively facilitate the consolidation of learned bimodal paired-associates, supported by theories such as the Standard Theory of Consolidation as well as the Synaptic Homeostasis Hypothesis.


Subject(s)
Association Learning/physiology , Memory, Long-Term/physiology , Retention, Psychology/physiology , Sleep, REM/physiology , Sleep/physiology , Adult , Female , Humans , Male , Polysomnography , Sleep Stages/physiology , Time Factors
17.
PLoS One ; 6(11): e27139, 2011.
Article in English | MEDLINE | ID: mdl-22110606

ABSTRACT

It is increasingly evident that sleep strengthens memory. However, it is not clear whether sleep promotes relational memory, resultant of the integration of disparate memory traces into memory networks linked by commonalities. The present study investigates the effect of a daytime nap, immediately after learning or after a delay, on a relational memory task that requires abstraction of general concept from separately learned items. Specifically, participants learned English meanings of Chinese characters with overlapping semantic components called radicals. They were later tested on new characters sharing the same radicals and on explicitly stating the general concepts represented by the radicals. Regardless of whether the nap occurred immediately after learning or after a delay, the nap participants performed better on both tasks. The results suggest that sleep--even as brief as a nap--facilitates the reorganization of discrete memory traces into flexible relational memory networks.


Subject(s)
Memory/physiology , Sleep/physiology , Adolescent , Adult , Cues , Humans , Male , Motivation/physiology , Time Factors , Vocabulary , Young Adult
18.
PLoS One ; 5(8): e12131, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20808821

ABSTRACT

BACKGROUND: Learning followed by a period of sleep, even as little as a nap, promotes memory consolidation. It is now generally recognized that sleep facilitates the stabilization of information acquired prior to sleep. However, the temporal nature of the effect of sleep on retention of declarative memory is yet to be understood. We examined the impact of a delayed nap onset on the recognition of neutral pictorial stimuli with an added spatial component. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed an initial study session involving 150 neutral pictures of people, places, and objects. Immediately following the picture presentation, participants were asked to make recognition judgments on a subset of "old", previously seen, pictures versus intermixed "new" pictures. Participants were then divided into one of four groups who either took a 90-minute nap immediately, 2 hours, or 4 hours after learning, or remained awake for the duration of the experiment. 6 hours after initial learning, participants were again tested on the remaining "old" pictures, with "new" pictures intermixed. CONCLUSIONS/SIGNIFICANCE: Interestingly, we found a stabilizing benefit of sleep on the memory trace reflected as a significant negative correlation between the average time elapsed before napping and decline in performance from test to retest (p = .001). We found a significant interaction between the groups and their performance from test to retest (p = .010), with the 4-hour delay group performing significantly better than both those who slept immediately and those who remained awake (p = .044, p = .010, respectively). Analysis of sleep data revealed a significant positive correlation between amount of slow wave sleep (SWS) achieved and length of the delay before sleep onset (p = .048). The findings add to the understanding of memory processing in humans, suggesting that factors such as waking processing and homeostatic increases in need for sleep over time modulate the importance of sleep to consolidation of neutral declarative memories.


Subject(s)
Retention, Psychology/physiology , Sleep/physiology , Adolescent , Adult , Analysis of Variance , Female , Humans , Male , Pattern Recognition, Visual/physiology , Sleep, REM/physiology , Time Factors , Wakefulness/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...