Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(25): 17389-17396, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38813128

ABSTRACT

Bacterial resistance towards antibiotics is a significant challenge for public health, and surface-enhanced Raman spectroscopy (SERS) has great potential to be a promising technique to provide detailed information about the effect of antibiotics against biofilms. SERS is employed to check the antibacterial potential of a lab synthesized drug ([bis(1,3-dipentyl-1H-imidazol-2(3H)-ylidene)silver(i)] bromide) against Bacillus subtilis and to analyze various SERS spectral features of unexposed and exposed Bacillus strains by observing biochemical changes in DNA, protein, lipid and carbohydrate contents induced by the lab synthesized imidazole derivative. Further, PCA and PLS-DA are employed to differentiate the SERS features. PCA was employed to differentiate the biochemical contents of unexposed and exposed Bacillus strains in the form of clusters of their representative SERS spectra and is also helpful in the pairwise comparison of two spectral data sets. PLS-DA provides authentic information to discriminate different unexposed and exposed Bacillus strains with 91% specificity, 93% sensitivity and 97% accuracy. SERS can be employed to characterize the complex and heterogeneous system of biofilms and to check the changes in spectral features of Bacillus strains by exposure to the lab synthesized imidazole derivative.

2.
RSC Adv ; 14(10): 7112-7123, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38419676

ABSTRACT

Escherichia coli biofilms are a major cause of gastrointestinal tract diseases, such as esophageal, stomach and intestinal diseases. Nowadays, these are the most commonly occurring diseases caused by consuming contaminated food. In this study, we evaluated the efficacy of probiotics in controlling multidrug-resistant E. coli and reducing its ability to form biofilms. Our results substantiate the effective use of probiotics as antimicrobial alternatives and to eradicate biofilms formed by multidrug-resistant E. coli. In this research, surface enhanced Raman spectroscopy (SERS) was utilized to identify and evaluate Escherichia coli biofilms and their response to the varying concentrations of the organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v). Given the escalating challenge of antibiotic resistance in bacteria that form biofilms, understanding the impact of potential antibiotic agents is crucial for the healthcare sector. The combination of SERS with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) enabled the detection and characterization of the biofilm, providing insights into the biochemical changes induced by the antibiotic candidate. The identified SERS spectral features served as indicators for elucidating the mode of action of the potential drug on the biofilm. Through PCA and PLS-DA, metabolic variations allowing the differentiation and classification of unexposed biofilms and biofilms exposed to different concentrations of the synthesized antibiotic were successfully identified, with 95% specificity, 96% sensitivity, and a 0.75 area under the curve (AUC). This research underscores the efficiency of surface enhanced Raman spectroscopy in differentiating the impact of potential antibiotic agents on E. coli biofilms.

3.
ACS Omega ; 9(6): 6861-6872, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371792

ABSTRACT

In the current study, surface-enhanced Raman scattering (SERS) was performed to evaluate the antibacterial activity of lab-synthesized drug (1-isopentyl-3-pentyl-1H-imidazole-3-ium bromide salt) and commercial drug tinidazole againstBacillus subtilis. The changes in SERS spectral features were studied for unexposed bacillus and exposed one with various dosages of drug synthesized in the lab (1-isopentyl-3-pentyl-1H-imidazole-3-ium bromide salt), and SERS bands were assigned associated with the drug-induced biochemical alterations in bacteria. Multivariate data analysis tools including principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) have been utilized to analyze the antibacterial activity of the imidazole derivative (lab drug). PCA was employed in differentiating all the SERS spectral data sets associated with the various doses of the lab-synthesized drug. There is clear discrimination among the spectral data sets of a bacterial strain treated with different concentrations of the drug, which are analyzed by PLS-DA with 86% area under the curve in receiver operating curve (ROC), 99% sensitivity, 100% accuracy, and 98% specificity. Various dominant spectral features are observed with a gradual increase in the different concentrations of the applied drug including 715, 850, 1002, 1132, 1237, 1396, 1416, and 1453 cm-1, which indicate the possible biochemical changes caused in bacteria during the antibacterial activity of the lab-synthesized drug. Overall, the findings show that imidazole and imidazolium compounds generated from tinidazole with various alkyl lengths in the amide substitution can be effective antibacterial agents with low cytotoxicity in humans, and these results indicate the efficiency of SERS in pharmaceuticals and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...