Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Biomol Struct Dyn ; : 1-9, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498362

ABSTRACT

Clathrin protein (CP) plays a pivotal role in numerous cellular processes, including endocytosis, signal transduction, and neuronal function. Dysregulation of CP has been associated with a spectrum of diseases. Given its involvement in various cellular functions, CP has garnered significant attention for its potential applications in drug design and medicine, ranging from targeted drug delivery to addressing viral infections, neurological disorders, and cancer. The accurate identification of CP is crucial for unraveling its function and devising novel therapeutic strategies. Computational methods offer a rapid, cost-effective, and less labor-intensive alternative to traditional identification methods, making them especially appealing for high-throughput screening. This paper introduces CL-Pred, a novel computational method for CP identification. CL-Pred leverages three feature descriptors: Dipeptide Deviation from Expected Mean (DDE), Bigram Position Specific Scoring Matrix (BiPSSM), and Position Specific Scoring Matrix-Tetra Slice-Discrete Cosine Transform (PSSM-TS-DCT). The model is trained using three classifiers: Support Vector Machine (SVM), Extremely Randomized Tree (ERT), and Light eXtreme Gradient Boosting (LiXGB). Notably, the LiXGB-based model achieves outstanding performance, demonstrating accuracies of 94.63% and 93.65% on the training and testing datasets, respectively. The proposed CL-Pred method is poised to significantly advance our comprehension of clathrin-mediated endocytosis, cellular physiology, and disease pathogenesis. Furthermore, it holds promise for identifying potential drug targets across a spectrum of diseases.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37850427

ABSTRACT

The identification of druggable proteins (DPs) is significant for the development of new drugs, personalized medicine, understanding of disease mechanisms, drug repurposing, and economic benefits. By identifying new druggable targets, researchers can develop new therapies for a range of diseases, leading to better patient outcomes. Identification of DPs by machine learning strategies is more efficient and cost-effective than conventional methods. In this study, a computational predictor, namely Drug-LXGB, is introduced to enhance the identification of DPs. Features are discovered by composition, transition, and distribution (CTD), composition of K-spaced amino acid pair (CKSAAP), pseudo-position-specific scoring matrix (PsePSSM), and a novel descriptor, called multi-block pseudo amino acid composition (MB-PseAAC). The dimensions of CTD, CKSAAP, PsePSSM, and MB-PseAAC are integrated and utilized the sequential forward selection as feature selection algorithm. The best characteristics are provided by random forest, extreme gradient boosting, and light eXtreme gradient boosting (LXGB). The predictive analysis of these learning methods is measured via 10-fold cross-validation. The LXGB-based model secures the highest results than other existing predictors. Our novel protocol will perform an active role in designing novel drugs and would be fruitful to explore the potential target. This study will help better to capture a more universal view of a potential target.Communicated by Ramaswamy H. Sarma.

3.
Sci Rep ; 13(1): 10947, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414797

ABSTRACT

The flow at a time-independent separable stagnation point on a Riga plate under thermal radiation and electro-magnetohydrodynamic settings is examined in this research. Two distinct base fluids-H2O and C2H6O2 and TiO2 nanostructures develop the nanocomposites. The flow problem incorporates the equations of motion and energy along with a unique model for viscosity and thermal conductivity. Similarity components are then used to reduce these model problem calculations. The Runge Kutta (RK-4) function yields the simulation result, which is displayed in graphical and tabular form. For both involved base fluid theories, the nanofluids flow and thermal profiles relating to the relevant aspects are computed and analyzed. According to the findings of this research, the C2H6O2 model heat exchange rate is significantly higher than the H2O model. As the volume percentage of nanoparticles rises, the velocity field degrades while the temperature distribution improves. Moreover, for greater acceleration parameters, TiO2/ C2H6O2has the highest thermal coefficient whereas TiO2/ H2O has the highest skin friction coefficient. The key observation is that C2H6O2 base nanofluid has a little higher performance than H2O nanofluid.


Subject(s)
Acceleration , Nanocomposites , Bone Plates , Computer Simulation
4.
Int J Biol Macromol ; 243: 125296, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37301349

ABSTRACT

Angiogenic proteins (AGPs) play a primary role in the formation of new blood vessels from pre-existing ones. AGPs have diverse applications in cancer, including serving as biomarkers, guiding anti-angiogenic therapies, and aiding in tumor imaging. Understanding the role of AGPs in cardiovascular and neurodegenerative diseases is vital for developing new diagnostic tools and therapeutic approaches. Considering the significance of AGPs, in this research, we first time established a computational model using deep learning for identifying AGPs. First, we constructed a sequence-based dataset. Second, we explored features by designing a novel feature encoder, called position-specific scoring matrix-decomposition-discrete cosine transform (PSSM-DC-DCT) and existing descriptors including Dipeptide Deviation from Expected Mean (DDE) and bigram-position-specific scoring matrix (Bi-PSSM). Third, each feature set is fed into two-dimensional convolutional neural network (2D-CNN) and machine learning classifiers. Finally, the performance of each learning model is validated by 10-fold cross-validation (CV). The experimental results demonstrate that 2D-CNN with proposed novel feature descriptor achieved the highest success rate on both training and testing datasets. In addition to being an accurate predictor for identification of angiogenic proteins, our proposed method (Deep-AGP) might be fruitful in understanding cancer, cardiovascular, and neurodegenerative diseases, development of their novel therapeutic methods and drug designing.


Subject(s)
Machine Learning , Neural Networks, Computer , Position-Specific Scoring Matrices
5.
Arch Comput Methods Eng ; : 1-12, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37359746

ABSTRACT

Viruses have killed and infected millions of people across the world. It causes several chronic diseases like COVID-19, HIV, and hepatitis. To cope with such diseases and virus infections, antiviral peptides (AVPs) have been applied in the design of drugs. Keeping in view the significant role in pharmaceutical industry and other research fields, identification of AVPs is highly indispensable. In this connection, experimental and computational methods were proposed to identify AVPs. However, more accurate predictors for boosting AVPs identification are highly desirable. This work presents a thorough study and reports the available predictors of AVPs. We explained applied datasets, feature representation approaches, classification algorithms, and evaluation parameters of performance. In this study, the limitations of the existing studies and the best methods were emphasized. Provided the pros and cons of the applied classifiers. The future insights demonstrate efficient feature encoding approaches, best feature optimization schemes, and effective classification techniques that can improve the performance of novel method for accurate prediction of AVPs.

6.
Sci Rep ; 13(1): 7009, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117488

ABSTRACT

This study looks at the natural convections of Cu + Al2O3/H2O nanofluid into a permeable chamber. The magnetic field is also executed on the flow field and the analysis has been approached numerically by the control volume method. The study of hybrid nanofluid heat in terms of the transfer flux was supplemented with a wide range of parameters of hybrid nanofluid fractions, Rayleigh numbers Hartmann numbers and porosity factor. It's also determined that the flow and thermal distribution are heavily affected by the concentration of the nanoparticles. The concentration of nanoparticles increases the transport of convective energy inside the enclosure. The primary findings demonstrate that a rise in both the Rayleigh number and Darcy number leads to an improvement in convective heat transfer within the enclosure. However, the porosity has a negligible effect. Additionally, the rotation in a clockwise direction has a beneficial impact on the dispersion of heat transfer throughout the cavity. Furthermore, it is concluded that hybrid nanofluids are more reliable than conventional fluids in improving thermal properties.

7.
J Chem Inf Model ; 63(3): 826-834, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36649569

ABSTRACT

The development of intracellular ice in the bodies of cold-blooded living organisms may cause them to die. These species yield antifreeze proteins (AFPs) to live in subzero temperature environments. Additionally, AFPs are implemented in biotechnological, industrial, agricultural, and medical fields. Machine learning-based predictors were presented for AFP identification. However, more accurate predictors are still highly desirable for boosting the AFP prediction. This work presents a novel approach, named AFP-SPTS, for the correct prediction of AFPs. We explored the discriminative features with four schemes, namely, dipeptide deviation from the expected mean (DDE), reduced amino acid alphabet (RAAA), grouped dipeptide composition (GDPC), and a novel representative method, called pseudo-position-specific scoring matrix tri-slicing (PseTS-PSSM). Considering the advantages of ensemble learning strategy, we fused each feature vector into different combinations and trained the models with five machine learning algorithms, i.e., multilayer perceptron (MLP), extremely randomized tree (ERT), decision tree (DT), random forest (RF), and AdaBoost. Among all models, PseTS-PSSM + RAAA with an extremely randomized tree attained the best outcomes. The proposed predictor (AFP-SPTS) boosted the accuracies of AFPs in the literature by 1.82 and 4.1%.


Subject(s)
Computational Biology , alpha-Fetoproteins , Antifreeze Proteins/chemistry , Algorithms , Dipeptides
8.
ACS Omega ; 7(37): 33432-33442, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157759

ABSTRACT

The growth of hybrid nanofluids can be connected to their enhanced thermal performance as pertains to the dynamics of automobile coolant among others. In addition to that, the thermal characteristics of water-based nanofluids carrying three different types of nanoparticles are incredible. Keeping in view this new idea, the current investigation explores ternary hybrid nanofluid flow over a stretching sheet. Joule heating and viscous dissipation are addressed in the heat equation. Three distinct kinds of nanoparticles, namely, magnesium oxide, copper, and MWCNTs, are suspended in water to form a ternary hybrid nanofluid with the combination MgO-Cu-MWCNTs-H2O. To stabilize the flow of the ternary hybrid nanofluid, transverse magnetic and electric fields have been considered in the fluid model. The production of entropy has been analyzed for the modeled problem. A comparative study for ternary, hybrid, and traditional nanofluids has also been carried out by sketching statistical charts. The equations that govern the problem are shifted to dimension-free format by employing transformable variables, and then they are solved by the homotopy analysis method (HAM). It has been revealed in this work that the flow of fluid opposes by magnetic parameter and supports by electric field the volumetric fraction of ternary hybrid nanofluid, while thermal profiles are gained by the growing values of these parameters. Boosting values of the electric field, magnetic parameters, and Eckert number support the Bejan number and oppose the production of entropy. Statistically, it has been established in this work that a ternary hybrid nanofluid has a higher thermal conductivity than hybrid or traditional nanofluids.

9.
ACS Omega ; 7(37): 33365-33374, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157780

ABSTRACT

The aim of this study is to determine the influence of the various parameters on the flow of thin film motion on an inclined extending surface. Maxwell fluid is used as a base fluid, and magnesium oxide (MgO) and titanium dioxide (TiO2) are used as nanocomponents. The width of the thin film is considered variable and varied according to the stability of the proposed model. The magnetic field is used in the vertical track to the flow field. The entropy generation and Bejan number are examined under the influence of various embedded parameters. The outputs of the liquid film motion, thermal profile, and concentration field are also shown with the help of their respective graphs based on the collected data. The solution of the model involves key features such as entropy generation, Bejan number, drag force, and heat transfer rate. Brinkman number, magnetic parameter, radiation parameter, thickness parameter ß, and unsteadiness parameter S are also deliberated graphically. The percentage improvement for the enhancement of heat transfer has been calculated and compared for both the nanofluid and hybrid nanofluids. The results are validated through comparison with the existing literature.

10.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35262658

ABSTRACT

B-cell epitopes have the capability to recognize and attach to the surface of antigen receptors to stimulate the immune system against pathogens. Identification of B-cell epitopes from antigens has a great significance in several biomedical and biotechnological applications, provides support in the development of therapeutics, design and development of an epitope-based vaccine and antibody production. However, the identification of epitopes with experimental mapping approaches is a challenging job and usually requires extensive laboratory efforts. However, considerable efforts have been placed for the identification of epitopes using computational methods in the recent past but deprived of considerable achievements. In this study, we present LBCEPred, a python-based web-tool (http://lbcepred.pythonanywhere.com/), build with random forest classifier and statistical moment-based descriptors to predict the B-cell epitopes from the protein sequences. LBECPred outperforms all sequence-based available models that are currently in use for the B-cell epitopes prediction, with 0.868 accuracy value and 0.934 area under the curve. Moreover, the prediction performance of proposed models compared to other state-of-the-art models is 56.3% higher on average for Mathews Correlation Coefficient. LBCEPred is easy to use tool even for novice users and has also shown the models stability and reliability, thus we believe in its significant contribution to the research community and the area of bioinformatics.


Subject(s)
Computational Biology , Epitopes, B-Lymphocyte , Amino Acid Sequence , Computational Biology/methods , Machine Learning , Reproducibility of Results
11.
Sci Rep ; 11(1): 21767, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741132

ABSTRACT

Proteins are a vital component of cells that perform physiological functions to ensure smooth operations of bodily functions. Identification of a protein's function involves a detailed understanding of the structure of proteins. Stress proteins are essential mediators of several responses to cellular stress and are categorized based on their structural characteristics. These proteins are found to be conserved across many eukaryotic and prokaryotic linkages and demonstrate varied crucial functional activities inside a cell. The in-vivo, ex vivo, and in-vitro identification of stress proteins are a time-consuming and costly task. This study is aimed at the identification of stress protein sequences with the aid of mathematical modelling and machine learning methods to supplement the aforementioned wet lab methods. The model developed using Random Forest showed remarkable results with 91.1% accuracy while models based on neural network and support vector machine showed 87.7% and 47.0% accuracy, respectively. Based on evaluation results it was concluded that random-forest based classifier surpassed all other predictors and is suitable for use in practical applications for the identification of stress proteins. Live web server is available at http://biopred.org/stressprotiens , while the webserver code available is at https://github.com/abdullah5naveed/SRP_WebServer.git.


Subject(s)
Machine Learning , Models, Statistical , Proteins/analysis , Stress, Physiological , Software
12.
Molecules ; 26(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34770738

ABSTRACT

This research work aims to scrutinize the mathematical model for the hybrid nanofluid flow in a converging and diverging channel. Titanium dioxide and silver TiO2 and Ag are considered as solid nanoparticles while blood is considered a base solvent. The couple-stress fluid model is essentially use to describe the blood flow. Therefore, the couple-stress term was used in the recent study with the existence of a magnetic field and a Darcy-Forchheiner porous medium. The heat absorption/omission and radiation terms were also included in the energy equation for the sustainability of drug delivery. An endeavor was made to link the recent study with the applications of drug delivery. It has already been revealed by the available literature that the combination of TiO2 with any other metal can destroy cancer cells more effectively than TiO2 separately. Both the walls are stretchable/shrinkable, whereas flow is caused by a source or sink with α as a converging/diverging parameter. Governing equations were altered into the system of non-linear coupled equations by using the similarity variables. The homotopy analysis method (HAM) was applied to obtain the preferred solution. The influences of the modeled parameters have been calculated and displayed. The confrontation of wall shear stress and hybrid nanofluid flow increased as the couple stress parameter rose, which indicates an improvement in the stability of the base fluid (blood). The percentage (%) increase in the heat transfer rate with the variation of nanoparticle volume fraction was also calculated numerically and discussed theoretically.


Subject(s)
Drug Delivery Systems , Hemodynamics , Hydrodynamics , Models, Theoretical , Nanoparticles , Nanotechnology/methods , Algorithms , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Silver , Stress, Mechanical
13.
Sci Rep ; 11(1): 19612, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34608189

ABSTRACT

The current study provides a detailed analysis of steady two-dimensional incompressible and electrically conducting magnetohydrodynamic flow of a couple stress hybrid nanofluid under the influence of Darcy-Forchheimer, viscous dissipation, joule heating, heat generation, chemical reaction, and variable viscosity. The system of partial differential equations of the current model (equation of motion, energy, and concentration) is converted into a system of ordinary differential equations by adopting the suitable similarity practice. Analytically, homotopy analysis method (HAM) is employed to solve the obtained set of equations. The impact of permeability, couple-stress and magnetic parameters on axial velocity, mean critical reflux condition and mean velocity on the channel walls are discussed in details. Computational effects show that the axial mean velocity at the boundary has an inverse relation with couple stress parameter while the permeability parameter has a direct relation with the magnetic parameter and vice versa. The enhancement in the temperature distribution evaluates the pH values and electric conductivity. Therefore, the [Formula: see text] hybrid nanofluids are used in this study for medication purpose.

14.
Anal Biochem ; 633: 114385, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34571005

ABSTRACT

N4-methylcytosine (4 mC) is an important epigenetic modification that occurs enzymatically by the action of DNA methyltransferases. 4 mC sites exist in prokaryotes and eukaryotes while playing a vital role in regulating gene expression, DNA replication, and cell cycle. The efficient and accurate prediction of 4 mC sites has a significant role in the insight of 4 mC biological properties and functions. Therefore, a sequence-based predictor is proposed, namely 4 mC-RF, for identifying 4 mC sites through the integration of statistical moments along with position, and composition-dependent features. Relative and absolute position-based features are computed to extract optimal features. A popular machine learning classifier Random Forest was used for training the model. Validation results were obtained through rigorous processes of self-consistency, 10-fold cross-validation, Independent set testing, and Jackknife yielding 95.1%, 95.2%, 97.0%, and 94.7% accuracies, respectively. Our proposed model depicts the highest prediction accuracies as compared to existing models. Subsequently, the developed 4 mC-RF model was constructed into a web server. A significant and more accurate predictor of 4 mC Methylcytosine sites helps experimental scientists to gather faster, efficient, and cost-effective results.


Subject(s)
Cytosine/analogs & derivatives , Machine Learning , Cytosine/chemistry , Cytosine/metabolism
15.
Sci Rep ; 11(1): 16708, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408217

ABSTRACT

This work investigates numerically the solution of Darcy-Forchheimer flow for hybrid nanofluid by employing the slip conditions. Basically, the fluid flow is produced by a swirling disk and is exposed to thermal stratification along with non-linear thermal radiation for controlling the heat transfer of the flow system. In this investigation, the nanoparticles of titanium dioxide and aluminum oxide have been suspended in water as base fluid. Moreover, the Darcy-Forchheimer expression is used to characterize the porous spaces with variable porosity and permeability. The resulting expressions of motion, energy and mass transfer in dimensionless form have been solved by HAM (Homotopy analysis method). In addition, the influence of different emerging factors upon flow system has been disputed both theoretically in graphical form and numerically in the tabular form. During this effort, it has been recognized that velocities profiles augment with growing values of mixed convection parameter while thermal characteristics enhance with augmenting values of radiation parameters. According to the findings, heat is transmitted more quickly in hybrid nanofluid than in traditional nanofluid. Furthermore, it is estimated that the velocities of fluid [Formula: see text] are decayed for high values of [Formula: see text] and [Formula: see text] factors.

16.
Sci Rep ; 11(1): 11621, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079026

ABSTRACT

The current study focuses on the laminar flow of copper and copper oxide ([Formula: see text] and [Formula: see text]) hybrid nanoliquid, considering blood as a carrier fluid in a rectangular domain between two permeable channels. This study may manipulate for the purpose such as the drug delivery process, flow dynamic mechanism of the micro-circulatory system. In the proposed model, MHD and heat source/sink on the flow pattern have been studied. Furthermore, the sides of each channel are permeable, allowing the nanoliquid to escape, filter, squeezing and dilating with a fixed velocity. Appropriate transformations are incorporated to convert the governing partial differential equations and the boundary conditions suitable for computation. The elegant homotopy analysis method (HAM) is used to obtain analytic approximations for the resulting system of nonlinear differential equations. The features of flow characteristics such as velocity, and temperature profiles in response to the variations of the emerging parameters are simulated and examined with a physical explanation. The magnetic field plays a vital role in the blood flow and therefore the existing literature has been extending with the addition of magnetic field. Among the many outputs of the study, it is found that the pressure distribution decline with the accumulated values of the magnetic parameter at the center of the flow regime. The augmentation in the temperature distribution estimates the pH values and electric conductivity. Therefore, the [Formula: see text] hybrid nanofluids are used in this study for medication purposes. The magnetic field has an important role in the blood flow and therefore the extending study has been extending using the magnetic field. The heat emission/absorption term is added to the energy equation to maintain the homogeneous temperature for the blood flow. We expect that this work will provide efficient outputs for medical purposes such as drug delivery.

17.
PLoS One ; 16(5): e0249434, 2021.
Article in English | MEDLINE | ID: mdl-33961625

ABSTRACT

The present article provides a detailed analysis of the Darcy Forchheimer flow of hybrid nanoliquid past an exponentially extending curved surface. In the porous space, the viscous fluid is expressed by Darcy-Forchheimer. The cylindrical shaped carbon nanotubes (SWCNTs and MWCNTs) and Fe3O4 (iron oxide) are used to synthesize hybrid nanofluid. At first, the appropriate similarity transformation is used to convert the modeled nonlinear coupled partial differential equations into nonlinear coupled ordinary differential equations. Then the resulting highly nonlinear coupled ordinary differential equations are analytically solved by the utilization of the "Homotopy analysis method" (HAM) method. The influence of sundry flow factors on velocity, temperature, and concentration profile are sketched and briefly discussed. The enhancement in both volume fraction parameter and curvature parameter k results in raises of the velocity profile. The uses of both Fe3O4 and CNTs nanoparticles are expressively improving the thermophysical properties of the base fluid. Apart from this, the numerical values of some physical quantities such as skin friction coefficients, local Nusselt number, and Sherwood number for the variation of the values of pertinent parameters are displayed in tabular forms. The obtained results show that the hybrid nanofluid enhances the heat transfer rate 2.21%, 2.1%, and 2.3% using the MWCNTs, SWCNTs, and Fe3O4 nanomaterials.


Subject(s)
Hot Temperature , Convection , Nanotubes, Carbon , Nonlinear Dynamics , Porosity , Surface Properties
18.
Sci Rep ; 11(1): 7460, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33811244

ABSTRACT

In this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time-dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, [Formula: see text] as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Optimal Homotopy Analysis Method is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. Detailed research is also performed to investigate the influences of relevant constraints on the rates, momentum and heat transport for both [Formula: see text] and [Formula: see text]. One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in the case of the hybrid nanofluid enhances the thermal conductivity from 5.8 to 11.947% and for the same value of the nanoparticle volume fraction in the case of nanofluid enhance the thermal conductivity from 2.576 to 5.197%.

19.
Sci Rep ; 11(1): 1180, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441841

ABSTRACT

The thermal management of the flow of the hybrid nanofluid within the conical gap between a cone and a disk is analyzed. Four different cases of flow are examined, including (1) stationary cone rotating disk (2) rotating cone stationary disk (3) rotating cone and disk in the same direction and (4) rotating cone and disk in the opposite directions. The magnetic field of strength [Formula: see text] is added to the modeled problem that is applied along the z-direction. This work actually explores the role of the heat transfer, which performs in a plate-cone viscometer. A special type of hybrid nanoliquid containing copper Cu and magnetic ferrite Fe3O4 nanoparticles are considered. The similarity transformations have been used to alter the modeled from partial differential equations (PDEs) to the ordinary differential equations (ODEs). The modeled problem is analytically treated with the Homotopy analysis method HAM and the numerical ND-solve method has been used for the comparison. The numerical outputs for the temperature gradient are tabulated against physical pertinent variables. In particular, it is concluded that increment in volume fraction of both nanoparticles [Formula: see text] effectively enhanced the thermal transmission rate and velocity of base fluid. The desired cooling of disk-cone instruments can be gained for a rotating disk with a fixed cone, while the surface temperature remains constant.

20.
Stud Health Technol Inform ; 248: 9-16, 2018.
Article in English | MEDLINE | ID: mdl-29726413

ABSTRACT

Lately, several studies started to investigate the existence of links between cannabis use and psychotic disorders. This work proposes a refined Machine Learning framework for understanding the links between cannabis use and 1st episode psychosis. The novel framework concerns extracting predictive patterns from clinical data using optimised and post-processed models based on Gaussian Processes, Support Vector Machines, and Neural Networks algorithms. The cannabis use attributes' predictive power is investigated, and we demonstrate statistically and with ROC analysis that their presence in the dataset enhances the prediction performance of the models with respect to models built on data without these specific attributes.


Subject(s)
Algorithms , Cannabis/adverse effects , Machine Learning , Psychoses, Substance-Induced , Humans , Psychotic Disorders , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...