Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267703

ABSTRACT

The design and development of novel photocatalysts for treating toxic substances such as industrial waste, dyes, pesticides, and pharmaceutical wastes remain a challenging task even today. To this end, a biowaste pistachio-shell-derived activated carbon (AC) loaded TiO2 (AC-TiO2) nanocomposite was fabricated and effectively utilized towards the photocatalytic degradation of toxic azo dye Reactive Red 120 (RR 120) and ofloxacin (OFL) under UV-A light. The synthesized materials were characterized for their structural and surface morphology features through various spectroscopic and microscopic techniques, including high-resolution transmission electron microscope (HR-TEM), field emission scanning electron microscope (FE-SEM) along with energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, photoluminescence spectra (PL) and BET surface area measurements. AC-TiO2 shows enhanced photocatalytic activity compared to bare TiO2 due to the change in the bandgap energy and effective charge separation. The degradation rate of dyes was affected by the bandgap of the semiconductor, which was the result of the deposition weight percentage of AC onto the TiO2. The presence of AC influences the photocatalytic activity of AC-TiO2 composite towards RR 120 and OFL degradation. The presence of heteroatoms-enriched AC enhances the charge mobility and suppresses the electron-hole recombination in AC-TiO2 composite, which enhances the photocatalytic activity of the composite. The hybrid material AC-TiO2 composite displayed a higher photocatalytic activity against Reactive Red 120 and ofloxacin. The stability of the AC-TiO2 was tested against RR 120 dye degradation with multiple runs. GC-MS analyzed the degradation intermediates, and a suitable degradation pathway was also proposed. These results demonstrate that AC-TiO2 composite could be effectively used as an ecofriendly, cost-effective, stable, and highly efficient photocatalyst.

2.
Chemistry ; 26(28): 6195-6204, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32077175

ABSTRACT

Developing efficient electrocatalysts for the hydrogen evolution reaction (HER) is crucial for establishing a sustainable and environmentally friendly energy system, but it is still a challenging issue. Herein, hierarchical tubular-structured CoS2 -MoS2 /C as efficient electrocatalysts are fabricated through a unique metal-organic framework (MOF) mediated self-sacrificial templating. Core-shell structured MoO3 @ZIF-67 nanorods are used both as a precursor and a sacrificial template to form the one-dimensional tubular heterostructure where vertically aligned two-dimensional CoS2 -MoS2 nanosheets are formed on the MOF-derived carbon tube. Trace amounts of noble metals (Pd, Rh, and Ru) are successfully introduced to enhance the electrocatalytic property of the CoS2 -MoS2 /C nanocomposites. The as-synthesized hierarchical tubular heterostructures exhibit excellent HER catalytic performance owing to the merits of the hierarchical hollow architecture with abundantly exposed edges and the uniformly dispersed active sites. Impressively, the optimal Pd-CoS2 -MoS2 /C-600 catalyst delivers a current density of 10 mA cm-2 at a low overpotential of 144 mV and a small Tafel slope of 59.9 mV/dec in 0.5 m H2 SO4 . Overall, this MOF-mediated strategy can be extended to the rational design and synthesis of other hollow heterogeneous catalysts for scalable hydrogen generation.

3.
RSC Adv ; 9(43): 25240-25247, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-35528647

ABSTRACT

Inspired by their distinctive properties, transition metal phosphides have gained immense attention as promising electrode materials for energy storage and conversion applications. The introduction of a safe and large-scale method of synthesizing a composite of these materials with carbon is of great significance in the fields of electrochemical and materials sciences. In the current effort, we successfully synthesize an iron phosphide/carbon (FeP/C) with a high specific surface area by the pyrolysis of the gel resulting from the hydrothermal treatment of an iron nitrate-phytic acid mixed solution. In comparison with the blank (P/C), the as-synthesized FeP/C appears to be an efficient electrode material for supercapacitor as well as oxygen reduction reaction (ORR) applications in an alkaline medium in a three-electrode system. In the study of supercapacitors, FeP/C shows areal capacitance of 313 mF cm-2 at 1.2 mA cm-2 while retaining 95% of its initial capacitance value after 10 000 cycles, while in the ORR, the synthesized material exhibits high electrocatalytic activity with an onset potential of ca. 0.86 V vs. RHE through the preferred four-electron pathway and less than 6% H2O2 production calculated in the potential range of 0.0-0.7 V vs. RHE. The stability is found to be better than those of the benchmark Pt/C (20 wt%) catalyst.

4.
ChemistryOpen ; 7(8): 599-603, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30094126

ABSTRACT

Herein, we report a novel method for the formation of hollow Prussian blue analogue (CoFe-PBA) nanocubes, using spherical silica particles as sacrificial templates. In the first step, silica cores are coated by a CoFe-PBA shell and then removed by etching with hydrofluoric acid (HF). The cubic shape of CoFe-PBA is well-retained even after the removal of the silica cores, resulting in the formation of hollow CoFe-PBA cubes. The specific capacity of the hollow CoFe-PBA nanocubes electrodes is about two times higher than that of solid CoFe-PBA nanocubes as storage materials for sodium ions. Such an improvement in the electrochemical properties can be attributed to their hollow internal nanostructure. The hollow architecture can offer a larger interfacial area between the electrolyte and the electrode, leading to an improvement in the electrochemical activity. This strategy can be applied to develop PBAs with hollow interiors for a wide range of applications.

5.
Int J Biol Macromol ; 104(Pt A): 56-62, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28571736

ABSTRACT

A facile approach utilizing synthesis of cobalt nanoparticles in green polymers of chitosan (CS) coating layer on high surface area cellulose microfibers of filter paper (CFP) is described for the catalytic reduction of nitrophenol and an organic dye using NaBH4. Simple steps of CFP coating with 1wt% CS aqueous solution followed by Co2+ ions adsorption from 0.2M CoCl2 aqueous solution were carried out to prepare pre-catalytic strips. The Co2+ loaded pre-catalytic strips of CS-CFP were treated with 0.19M NaBH4 aqueous solution to convert the ions into nanoparticles. Successful Co nanoparticles formation was assessed by various characterization techniques of FESEM, EDX and XRD analyzes. TGA analyses were carried out on CFP, CS-CFP, and Co-CS-CFP for the determination of the amount of Co particles formed on the CS-FP, and to track their thermal properties. Furthermore, we demonstrated that the Co-CS-CFP showed an excellent catalytic activity and reusability in the reduction reactions a nitroaromatic compound of 2,6-dintirophenol (2,6-DNP) and brilliant cresyl blue (BCB) dye by NaBH4. The Co-CS-CFP catalyzed the reduction reactions of 2,6-DNP and BCB by NaBH4 with psuedo-first order rate constants of 0.0451 and 0.1987min-1, respectively.


Subject(s)
Cellulose/chemistry , Cobalt/chemistry , Filtration/instrumentation , Metal Nanoparticles/chemistry , Paper , Adsorption , Catalysis , Models, Molecular , Molecular Conformation , Nitrophenols/chemistry , Nitrophenols/isolation & purification , Oxazines/chemistry , Oxazines/isolation & purification , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...