Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res ; 32(5): 817-830, 2024.
Article in English | MEDLINE | ID: mdl-38686050

ABSTRACT

Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.


Subject(s)
Apoptosis , Breast Neoplasms , Doxorubicin , Sodium-Glucose Transporter 2 Inhibitors , Female , Humans , Apoptosis/drug effects , Apoptosis/genetics , Benzhydryl Compounds/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Canagliflozin/pharmacology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Glucose/metabolism , Glucosides/pharmacology , MCF-7 Cells , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...