Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
BMC Immunol ; 25(1): 21, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637733

ABSTRACT

Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.


Subject(s)
Colitis , Helminth Proteins , Animals , Mice , Colitis/therapy , Cytokines/metabolism , Disease Models, Animal , Helminth Proteins/therapeutic use , Helminths , Immune System/metabolism , Immunologic Factors
2.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38371953

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

3.
Front Immunol ; 14: 1291534, 2023.
Article in English | MEDLINE | ID: mdl-38149243

ABSTRACT

Background: Adaptive humoral immunity against SARS-CoV-2 has mainly been evaluated in peripheral blood. Human secondary lymphoid tissues (such as tonsils) contain large numbers of plasma cells that secrete immunoglobulins at mucosal sites. Yet, the role of mucosal memory immunity induced by vaccines or natural infection against SARS-CoV-2 and its variants is not fully understood. Methods: Tonsillar mononuclear cells (TMNCs) from adults (n=10) and children (n=11) were isolated and stimulated using positive SARS-CoV-2 nasal swabs. We used endpoint enzyme-linked immunosorbent assays (ELISAs) for the measurement of anti-S1, -RBD, and -N IgG antibody levels and a pseudovirus microneutralization assay to assess neutralizing antibodies (nAbs) in paired serum and supernatants from stimulated TMNCs. Results: Strong systemic humoral response in previously SARS-CoV-2 infected and vaccinated adults and children was observed in accordance with the reported history of the participants. Interestingly, we found a significant increase in anti-RBD IgG (305 and 834 folds) and anti-S1 IgG (475 and 443 folds) in the stimulated TMNCs from adults and children, respectively, compared to unstimulated cells. Consistently, the stimulated TMNCs secreted higher levels of nAbs against the ancestral Wuhan strain and the Omicron BA.1 variant compared to unstimulated cells by several folds. This increase was seen in all participants including children with no known history of infection, suggesting that these participants might have been previously exposed to SARS-CoV-2 and that not all asymptomatic cases necessarily could be detected by serum antibodies. Furthermore, nAb levels against both strains were significantly correlated in adults (r=0.8788; p = 0.0008) and children (r = 0.7521; p = 0.0076), and they strongly correlated with S1 and RBD-specific IgG antibodies. Conclusion: Our results provide evidence for persistent mucosal humoral memory in tonsils from previously infected and/or vaccinated adults and children against recent and old variants upon re-exposure. They also highlight the importance of targeting mucosal sites with vaccines to help control infection at the primary sites and prevent potential breakthrough infections.


Subject(s)
COVID-19 , Vaccines , Adult , Child , Humans , Immunity, Humoral , Palatine Tonsil , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing
4.
PeerJ ; 11: e15024, 2023.
Article in English | MEDLINE | ID: mdl-37065688

ABSTRACT

Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Immunoglobulin G/analysis , Immunoglobulin M/analysis , COVID-19 Testing
5.
ACS Omega ; 8(10): 9170-9178, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936315

ABSTRACT

The development of inexpensive and highly functional lateral flow devices, which utilize simple and affordable tools, can make them accessible to many populations with insufficient resources. Therefore, this study aims to provide a method to overcome the cost challenges associated with using expensive manufacturing technologies and machinery, particularly during pandemics and upon urgent need. Here, in-house lateral flow strips to detect serum antibodies were developed using low-priced and easily available tools such as adhesive tape and CytoSep layers. The developed lateral flow immunoassay strips presented here produced signals with 93.3 and 96.6% sensitivity for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies, respectively. The specificity obtained from the developed strips was 96.6% for SARS-CoV-2 nucleocapsid protein-specific IgM and 100% for the IgG antibodies by applying only 5 µL from the serum samples. The proposed design was entirely made manually to ensure a method that would make lateral flow devices available to many populations in need around the globe.

6.
Malar J ; 22(1): 53, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782234

ABSTRACT

BACKGROUND: Livelihood activities and human movements participate in the epidemiology of vector-borne diseases and influence malaria risk in elimination settings. In Saudi Arabia, where malaria transmission intensity varies geographically, it is vital to understand the components driving transmission within specific areas. In addition, shared social, behavioural, and occupational characteristics within communities may provoke the risk of malaria infection. This study aims to understand the relationship between human mobility, livelihood activities, and the risk of malaria infection in the border region of Jazan to facilitate further strategic malaria interventions. In addition, the study will complement and reinforce the existing efforts to eliminate malaria on the Saudi and Yemen border by providing a deeper understanding of human movement and livelihood activities. METHODS: An unmatched case-control study was conducted. A total of 261 participants were recruited for the study, including 81 cases of confirmed malaria through rapid diagnostic tests (RDTs) and microscopy and 180 controls in the Baish Governorate in Jazan Provinces, Saudi Arabia. Individuals who received malaria tests were interviewed regarding their livelihood activities and recent movement (travel history). A questionnaire was administered, and the data was captured electronically. STATA software version 16 was used to analyse the data. Bivariate and multivariate analyses were conducted to determine if engaging in agricultural activities such as farming and animal husbandry, recent travel history outside of the home village within the last 30 days and participating in spiritual gatherings were related to malaria infection status. RESULTS: A logistical regression model was used to investigate components associated with malaria infection. After adjusting several confounding factors, individuals who reported travelling away from their home village in the last 30 days OR 11.5 (95% CI 4.43-29.9), and those who attended a seasonal night spiritual gathering OR 3.04 (95% CI 1.10-8.42), involved in animal husbandry OR 2.52 (95% CI 1.10-5.82), and identified as male OR 4.57 (95% CI 1.43-14.7), were more likely to test positive for malaria infection. CONCLUSION: Human movement and livelihood activities, especially at nighttime, should be considered malaria risk factors in malaria elimination settings, mainly when the targeted area is limited to a confined borderland area.


Subject(s)
Malaria , Animals , Humans , Male , Case-Control Studies , Malaria/prevention & control , Risk Factors , Travel , Animal Husbandry
7.
Clin Infect Dis ; 76(3): e308-e318, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35675306

ABSTRACT

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic zoonotic betacoronavirus and a global public health concern. Better undersetting of the immune responses to MERS-CoV is needed to characterize the correlates of protection and durability of the immunity and to aid in developing preventative and therapeutic interventions. Although MERS-CoV-specific circulating antibodies could persist for several years post-recovery, their waning raises concerns about their durability and role in protection. Nonetheless, memory B and T cells could provide long-lasting protective immunity despite the serum antibodies levels. METHODS: Serological and flow cytometric analysis of MERS-CoV-specific immune responses were performed on samples collected from a cohort of recovered individuals who required intensive care unit (ICU) admission as well as hospital or home isolation several years after infection to characterize the longevity and quality of humoral and cellular immune responses. RESULTS: Our data showed that MERS-CoV infection could elicit robust long-lasting virus-specific binding and neutralizing antibodies as well as T- and B-cell responses up to 6.9 years postinfection regardless of disease severity or need for ICU admission. Apart from the persistent high antibody titers, this response was characterized by B-cell subsets with antibody-independent functions as demonstrated by their ability to produce tumor necrosis factor α (TNF-α), interleukin (IL)-6, and interferon γ (IFN-γ) cytokines in response to antigen stimulation. Furthermore, virus-specific activation of memory CD8+ and CD4+ T cell subsets from MERS-recovered patients resulted in secretion of high levels of TNF-α, IL-17, and IFN-γ. CONCLUSIONS: MERS-CoV infection could elicit robust long-lasting virus-specific humoral and cellular responses.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Humans , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/prevention & control , Immunity, Cellular , Interferon-gamma , Tumor Necrosis Factor-alpha , T-Lymphocytes/immunology , B-Lymphocytes/immunology
8.
Front Neurol ; 13: 1021877, 2022.
Article in English | MEDLINE | ID: mdl-36353130

ABSTRACT

Traumatic brain injury (TBI) places a heavy load on healthcare systems worldwide. Despite significant advancements in care, the TBI-related mortality is 30-50% and in most cases involves adolescents or young adults. Previous literature has suggested that neutrophil-to-lymphocyte ratio (NLR) may serve as a sensitive biomarker in predicting clinical outcomes following TBI. With conclusive evidence in this regard lacking, this study aimed to systematically review all original studies reporting the effectiveness of NLR as a predictor of TBI outcomes. A systematic search of eight databases was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) recommendations. The risk of bias was assessed using the Quality in Prognostic Studies (QUIPS) tool. Eight studies were ultimately included in the study. In most of the studies interrogated, severity outcomes were successfully predicted by NLR in both univariate and multivariate prediction models, in different follow-up durations up to 6 months. A high NLR at 24 and 48 h after TBI in pediatric patients was associated with worse clinical outcomes. On pooling the NLR values within studies assessing its association with the outcome severity (favorable or not), patients with favorable outcomes had 37% lower NLR values than those with unfavorable ones (RoM= 0.63; 95% CI = 0.44-0.88; p = 0.007). However, there were considerable heterogeneity in effect estimates (I 2 = 99%; p < 0.001). Moreover, NLR was a useful indicator of mortality at both 6-month and 1-year intervals. In conjunction with clinical and radiographic parameters, NLR might be a useful, inexpensive marker in predicting clinical outcomes in patients with TBI. However, the considerable heterogeneity in current literature keeps it under investigation with further studies are warranted to confirm the reliability of NLR in predicting TBI outcomes.

9.
Micromachines (Basel) ; 13(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363922

ABSTRACT

Abundant immunological assays currently exist for detecting pathogens and identifying infected individuals, making detection of diseases at early stages integral to preventing their spread, together with the consequent emergence of global health crises. Lateral flow immunoassay (LFIA) is a test characterized by simplicity, low cost, and quick results. Furthermore, LFIA testing does not need well-trained individuals or laboratory settings. Therefore, it has been serving as an attractive tool that has been extensively used during the ongoing COVID-19 pandemic. Here, the LFIA strip's available formats, reporter systems, components, and preparation are discussed. Moreover, this review provides an overview of the current LFIAs in detecting infectious viral antigens and humoral responses to viral infections.

10.
Glob Chall ; 6(7): 2200008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35860397

ABSTRACT

Rapid lateral flow immune-assays are point-of-care diagnostic tools that are easy to use, cheap, and do not need centralized infrastructure. Therefore, these devices are appealing for rapid detection of the humoral immune responses to infections, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The novel technique introduced here uses a complex of anti-SARS-CoV-2 N-protein antibodies conjugated to gold nanoparticles that are bound to five SARS-CoV-2 N protein conjugated to gold nanoparticles to amplify the signals obtained from the conjugated SARS-CoV-2 N protein and to enhance the assay detection limit. To validate the performance of the adopted lateral flow, serum from SARS-CoV-2 seropositive individuals and prepandamic negative samples are tested and compared to a validated enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-CoV-2 N protein specific IgG and IgM antibodies. The data shows that the designed lateral flow assay has an excellent sensitivity and specificity upon detecting IgM and IgG antibodies by applying only 2 µL from the serum sample to the adopted strips. Taken together, the developed lateral flow immunoassay assay provides a rapid, specific, and highly sensitive means to detect the immune responses against SARS-CoV-2 with only 2 µL from the serum sample.

11.
Front Microbiol ; 12: 727455, 2021.
Article in English | MEDLINE | ID: mdl-34557174

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 µg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.

12.
Vaccines (Basel) ; 9(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34451977

ABSTRACT

The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is worthy of further preclinical and clinical evaluation.

13.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34372618

ABSTRACT

Healthcare workers (HCWs) are at high risk for SARS-CoV-2 infection compared to the general population. Here, we aimed to evaluate and characterize the SARS-CoV-2 seropositivity rate in randomly collected samples among HCWs from the largest referral hospitals and quarantine sites during the peak of the COVID-19 epidemic in the city of Jeddah, the second largest city in Saudi Arabia, using a cross-sectional analytic study design. Out of 693 participants recruited from 29 June to 10 August 2020, 223 (32.2%, 95% CI: 28.8-35.8) were found to be confirmed seropositive for SARS-CoV-2 antibodies, and among those 197 (88.3%) had never been diagnosed with COVID-19. Seropositivity was not significantly associated with participants reporting COVID-19 compatible symptoms as most seropositive HCW participants 140 (62.8%) were asymptomatic. The large proportion of asymptomatic SARS-CoV-2 cases detected in our study demands periodic testing as a general hospital policy.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing , Chlorocebus aethiops , Cross-Sectional Studies , Female , Health Personnel/statistics & numerical data , Humans , Infection Control , Male , Middle Aged , Quarantine , Referral and Consultation , Saudi Arabia/epidemiology , Seroepidemiologic Studies , Vero Cells
14.
Eur J Immunol ; 51(8): 2086-2092, 2021 08.
Article in English | MEDLINE | ID: mdl-33949684

ABSTRACT

Regulatory T-cells (Tregs) are a subset of T cells generated in the thymus with intrinsic immunosuppressive properties. Phase I clinical trials have shown safety and feasibility of Treg infusion to promote immune tolerance and new studies are ongoing to evaluate their efficacy. During heart transplantation, thymic tissue is routinely discarded providing an attractive source of Tregs. In this study, we developed a GMP-compatible protocol for expanding sorted thymus-derived CD3+ CD4+ CD25+ CD127- (Tregs) as well as CD3+ CD4+ CD25+ CD127- CD45RA+ (RA+ Tregs) cells. We aimed to understand whether thymic RA+ Tregs can be isolated and expanded offering an advantage in terms of stability as it has been previously shown for circulating adult CD45RA+ Tregs. We show that both Tregs and RA+ Tregs could be expanded in large numbers and the presence of rapamycin is essential to inhibit the growth of IFN-γ producing cells. High levels of FOXP3, CTLA4, and CD25 expression, demethylation of the FOXP3 promoter, and high suppressive ability were found with no differences between Tregs and RA+ Tregs. After freezing and thawing, all Treg preparations maintained their suppressive ability, stability, as well as CD25 and FOXP3 expression. The number of thymic Tregs that could be isolated with our protocol, their fold expansion, and functional characteristics allow the clinical application of this cell population to promote tolerance in pediatric heart transplant patients.


Subject(s)
Flow Cytometry/methods , Heart Transplantation , T-Lymphocytes, Regulatory , Child , Child, Preschool , Female , Humans , Infant , Male , Thymus Gland/cytology
15.
Methods Mol Biol ; 2270: 451-467, 2021.
Article in English | MEDLINE | ID: mdl-33479913

ABSTRACT

Transplantation is still the treatment of choice for organ failure; however, allograft induces inflammatory immune responses that require immunosuppressive treatment. The role of regulatory B cells (Bregs) in downregulating inflammation has been reported to be significant in several diseases including transplant rejection. Many reports have analyzed different B-cell subpopulations, including Bregs, in tolerant, stable, and rejecting transplant recipients as well as the influence of immunosuppressant on the frequencies and functions of the different B-cell subsets. In this chapter, the key techniques required to investigate human Breg frequencies and functions in transplant patients are discussed.


Subject(s)
B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/transplantation , Immunophenotyping/methods , ADP-ribosyl Cyclase 1/immunology , CD24 Antigen/immunology , Cell Count , Cell Proliferation/physiology , Female , Humans , Immunosuppressive Agents , Interleukin-10/immunology , Male , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
16.
Front Immunol ; 12: 785349, 2021.
Article in English | MEDLINE | ID: mdl-35095861

ABSTRACT

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.


Subject(s)
CD40 Ligand/immunology , COVID-19/immunology , Mesocricetus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cell Line , Female , HEK293 Cells , Humans , Lung/immunology , Lung/virology , Mesocricetus/virology , Models, Animal , Vaccination/methods , Vaccines, Inactivated/immunology
17.
Viruses ; 12(12)2020 12 04.
Article in English | MEDLINE | ID: mdl-33291713

ABSTRACT

The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunity, Humoral , Immunoglobulin G/blood , Antibodies, Neutralizing/blood , COVID-19/diagnosis , Hospitalization , Humans , Immunoglobulin M/blood , Kinetics , Longitudinal Studies , Neutralization Tests , Nucleocapsid Proteins/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
18.
Pathogens ; 9(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352788

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally. Although several rapid commercial serological assays have been developed, little is known about their performance and accuracy in detecting SARS-CoV-2-specific antibodies in COVID-19 patient samples. Here, we have evaluated the performance of seven commercially available rapid lateral flow immunoassays (LFIA) obtained from different manufacturers, and compared them to in-house developed and validated ELISA assays for the detection of SARS-CoV-2-specific IgM and IgG antibodies in RT-PCR-confirmed COVID-19 patients. While all evaluated LFIA assays showed high specificity, our data showed a significant variation in sensitivity of these assays, which ranged from 0% to 54% for samples collected early during infection (3-7 days post symptoms onset) and from 54% to 88% for samples collected at later time points during infection (8-27 days post symptoms onset). Therefore, we recommend prior evaluation and validation of these assays before being routinely used to detect IgM and IgG in COVID-19 patients. Moreover, our findings suggest the use of LFIA assays in combination with other standard methods, and not as an alternative.

19.
Sci Rep ; 10(1): 16561, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024213

ABSTRACT

As the Coronavirus Disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses (CoVs). The developed SARS-CoV-2 S1 subunit of the spike glycoprotein and nucleocapsid (N)-based ELISAs not only showed high specificity and sensitivity but also did not show any cross-reactivity with other CoVs. We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Nucleocapsid Proteins/immunology , Pneumonia, Viral/diagnosis , Seroconversion , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Betacoronavirus/genetics , COVID-19 , Cohort Studies , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
20.
Front Genet ; 11: 312, 2020.
Article in English | MEDLINE | ID: mdl-32391048

ABSTRACT

The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...