Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36296495

ABSTRACT

In the current study, new benzimidazole-based 1,3,4-oxadiazole derivatives have been synthesized and characterized by NMR, IR, MS, and elemental analysis. The final compounds were screened for cytotoxicity against MDA-MB-231, SKOV3, and A549 cell lines and EGFR for inhibitory activities. Compounds 10 and 13 were found to be the most active against all the tested cell lines, comparable to doxorubicin, and exhibited significant inhibition on EGFR kinase, with IC50 0.33 and 0.38 µM, respectively, comparable to erlotinib (IC50 0.39 µM). Furthermore, these two compounds effectively suppressed cell cycle progression and induced cell apoptosis in MDA-MB-231, SKOV3, and A549 cell lines. The docking studies revealed that these compounds showed interactions similar to erlotinib at the EGFR site. It can be concluded that the synthesized molecules effectively inhibit EGFR, can arrest the cell cycle, and may trigger apoptosis and therefore, could be used as lead molecules in the development of new anticancer agents targeting EGFR kinase.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Drug Screening Assays, Antitumor , Erlotinib Hydrochloride/pharmacology , Protein Kinase Inhibitors/chemistry , ErbB Receptors/metabolism , Antineoplastic Agents/chemistry , Cell Line, Tumor , Molecular Docking Simulation , Cell Proliferation , Apoptosis , Cell Cycle Checkpoints , Benzimidazoles/pharmacology , Doxorubicin/pharmacology , Structure-Activity Relationship
2.
Materials (Basel) ; 15(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629702

ABSTRACT

The newly synthesized organometallic acetyl ferrocene imine ligand (HL) was obtained by the direct combination of 2-acetyl ferrocene with 2-aminothiophenol. The electronic and molecular structure of acetyl ferrocene imine ligand (HL) was refined theoretically and the chemical quantum factors were computed. Complexes of the acetyl ferrocene imine ligand with metal(II)/(III) ions (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) were fabricated. They were inspected by thermal (DTG/TG), spectroscopic techniques (FT-IR, 1H NMR, mass, UV-Vis), molar conductivity, and CHNClM to explicate their structures. Studies using scanning electron microscope (SEM) were conducted on the free acetyl ferrocene imine ligand and its Cd(II) chelate to confirm their nano-structure. To collect an idea about the effect of metal ions on anti-pathogenic properties upon chelation, the newly synthesized acetyl ferrocene imine ligand and some of its metal chelates were tested against a variety of microorganisms, including Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, Aspergillus fumigatus, and Candida albicans. The ligand and its metal chelate were tested for cytotoxic activity in human cancer (MCF-7 cell viability) and human melanocyte cell line HBF4. It was discovered that the Cd(II) chelate had the lowest IC50 of the three and thus had the prior activity. Molecular docking was utilized to investigate the interaction of acetyl ferrocene imine ligand (HL) with the receptors of the vascular endothelial growth factor receptor VEGFR (PDB ID: 1Y6a), human Topo IIA-bound G-segment DNA crystal structure (PDB ID: 2RGR), and Escherichia coli crystal structure (PDB ID: 3T88).

3.
Future Med Chem ; 10(14): 1693-1704, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29957063

ABSTRACT

AIM: Melatonin (MLT) is a major hormone secreted by the pineal gland. In this study, a gold(III) MLT (Au+3/MLT) complex has been synthesized and investigating its protective effects against testicular damage. METHODOLOGY: The structural features of the complex were investigated. For biological assessment, 30 male rats were divided into three groups for 30 days. The first control group, the second received MLT and the third received Au+3/MLT complex. RESULTS: The Au+3/MLT complex was found to be nonelectrolytic with formula (Au[MLT]2[Cl][H2O]). The ligand is monodentate and adopt square-planar geometry. Its particles range in diameter from 35 to 100 nm. MLT affords slight oxidative stress protection. The Au+3/MLT complex significantly decreases TNF-α and IL-1ß levels but elevates antioxidant enzyme capacities, reducing lipid peroxidation markers and improving testicular histological structure. CONCLUSION: The Au+3/MLT complex improves the anti-inflammatory actions of MLT, exhibits potent antioxidant activity and enhances reproductive capacity.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Coordination Complexes/pharmacology , Gold/chemistry , Melatonin/chemistry , Nanostructures/chemistry , Testis/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Interleukin-1beta/metabolism , Magnetics , Male , Models, Animal , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Testis/metabolism , Testis/pathology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...