Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
2.
Pharmaceutics ; 15(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38004511

ABSTRACT

This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA's therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy.

3.
J Biomol Struct Dyn ; 41(21): 11647-11656, 2023.
Article in English | MEDLINE | ID: mdl-36755429

ABSTRACT

The current study aimed to expand on the recently published results and assess the inhibitory efficacy of aloin A against SARS CoV-2. In vitro testing of aloin A against SARS CoV-2 proteases (i.e., MPro and PLPro) showed weak to moderate activity (IC50 = 68.56 ± 1.13 µM and 24.77 ± 1.57 µM, respectively). However, aloin A was able to inhibit the replication of SARS CoV-2 in Vero E6 cells efficiently with an IC50 of 0.095 ± 0.022 µM. Depending on the reported poor permeability of aloin A alongside its insignificant protease inhibitory activities presented in this study, we ran a number of extensive virtual screenings and physics-based simulations to determine the compound's potential mode of action. As a result, RBD-ACE2 was identified as a key target for aloin A. Results from 600 ns-long molecular dynamics (MD) simulation experiments pointed to aloin A's role as an RBD-ACE2 destabilizer. Therefore, the results of this work may pave the way for further development of this scaffold and the eventual production of innovative anti-SARS CoV-2 medicines with several mechanisms of action.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Humans , Angiotensin-Converting Enzyme 2 , Molecular Dynamics Simulation , SARS-CoV-2 , Molecular Docking Simulation , Protease Inhibitors/pharmacology
4.
Pharmaceutics ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: mdl-36297635

ABSTRACT

The prevalence of multidrug-resistant Salmonella enterica among animal- and plant-derived food products threatens global healthcare and economic sectors. Hen egg white lysozyme is widely exploited as a food preservative against Gram-positive pathogens. Nevertheless, its limited penetration of the outer membrane renders it ineffective against Gram-negative bacteria. Herein, we present a safe and effective approach to facilitate HEWL access to peptidoglycan layers using cecropin A. In silico analysis of cecropin A peptide revealed an amphipathic α-helical peptide with potential outer membrane permeabilizing activity through its interaction with both hydrophobic and ionic stabilizing forces. Evaluation of HEWL/cecropin A combination showed a cecropin A dose-dependent bacterial count reduction up to 4.16 and 3.18 ± 0.26 log units against Salmonella enterica ATCC 35664 at the logarithmic and stationary growth phases, respectively. Moreover, the combination displayed antibacterial activity of 2.1 ± 0.31 and ~1 log-unit reductions against Salmonella enterica serovars Kentucky, Typhimurium, and Enteritidis, respectively, whereas Hato and Shangani were found irresponsive. The cytotoxicity assay revealed compatibility of cecropin A with oral epithelial cells. These observations suggest HEWL/cecropin A combination as an effective and safe alternative to lysozyme against Salmonella enterica.

5.
Diagnostics (Basel) ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35885629

ABSTRACT

Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≥20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response "Mean: 561.11". Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients' previous medical history (anamnesis) should be considered in interpreting serological results.

6.
Biosensors (Basel) ; 12(4)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35448292

ABSTRACT

Simple, timely, and precise detection of SARS-CoV-2 in clinical samples and contaminated surfaces aids in lowering attendant morbidity/mortality related to this infectious virus. Currently applied diagnostic techniques depend on a timely laboratory report following PCR testing. However, the application of these tests is associated with inherent shortcomings due to the need for trained personnel, long-time centralized laboratories, and expensive instruments. Therefore, there is an interest in developing biosensing diagnostic frontiers that can help in eliminating these shortcomings with a relatively economical, easy-to-use, well-timed, precise and sensitive technology. This study reports the development of fabricated Q-tips designed to qualitatively and semi-quantitatively detect SARS-CoV-2 in clinical samples and contaminated non-absorbable surfaces. This colorimetric sensor is engineered to sandwich SARS-CoV-2 spike protein between the lactoferrin general capturing agent and the complementary ACE2-labeled receptor. The ACE2 receptor is decorated with an orange-colored polymeric nanoparticle to generate an optical visual signal upon pairing with the SARS-CoV-2 spike protein. This colorimetric change of the Q-tip testing zone from white to orange confirms a positive result. The visual detection limit of the COVID-19 engineered colorimetric Q-tip sensor was 100 pfu/mL within a relatively short turnaround time of 5 min. The linear working range of quantitation was 103-108 pfu/mL. The engineered sensor selectively targeted SARS-CoV-2 spike protein and did not bind to another coronavirus such as MERS-CoV, Flu A, or Flu B present on the contaminated surface. This novel detection tool is relatively cheap to produce and suitable for onsite detection of COVID-19 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , Humans , Spike Glycoprotein, Coronavirus/analysis
7.
J Healthc Eng ; 2022: 6074538, 2022.
Article in English | MEDLINE | ID: mdl-35368940

ABSTRACT

Early and accurate detection of COVID-19 is an essential process to curb the spread of this deadly disease and its mortality rate. Chest radiology scan is a significant tool for early management and diagnosis of COVID-19 since the virus targets the respiratory system. Chest X-ray (CXR) images are highly useful in the effective detection of COVID-19, thanks to its availability, cost-effective means, and rapid outcomes. In addition, Artificial Intelligence (AI) techniques such as deep learning (DL) models play a significant role in designing automated diagnostic processes using CXR images. With this motivation, the current study presents a new Quantum Seagull Optimization Algorithm with DL-based COVID-19 diagnosis model, named QSGOA-DL technique. The proposed QSGOA-DL technique intends to detect and classify COVID-19 with the help of CXR images. In this regard, the QSGOA-DL technique involves the design of EfficientNet-B4 as a feature extractor, whereas hyperparameter optimization is carried out with the help of QSGOA technique. Moreover, the classification process is performed by a multilayer extreme learning machine (MELM) model. The novelty of the study lies in the designing of QSGOA for hyperparameter optimization of the EfficientNet-B4 model. An extensive series of simulations was carried out on the benchmark test CXR dataset, and the results were assessed under different aspects. The simulation results demonstrate the promising performance of the proposed QSGOA-DL technique compared to recent approaches.


Subject(s)
Artificial Intelligence , COVID-19 , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Machine Learning , X-Rays
8.
Mar Drugs ; 20(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35323462

ABSTRACT

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Indole Alkaloids/chemistry , Piperazines/chemistry , SARS-CoV-2/enzymology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antiviral Agents/isolation & purification , Aspergillus fumigatus/chemistry , Cysteine Proteinase Inhibitors/isolation & purification , Indole Alkaloids/isolation & purification , Molecular Docking Simulation , Molecular Dynamics Simulation , Piperazines/isolation & purification
9.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056143

ABSTRACT

E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli's Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < -10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli's Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains.

10.
Trends Biotechnol ; 40(6): 708-720, 2022 06.
Article in English | MEDLINE | ID: mdl-34815101

ABSTRACT

Stroke is an unmet clinical need with a paucity of treatments, at least in part because chronic stroke pathologies are prohibitive to 'first-generation' stem cell-based therapies. Hydrogels can remodel the hostile stroke microenvironment to aid endogenous and exogenous regenerative repair processes. However, no clinical trials have yet been successfully commissioned for these 'second-generation' hydrogel-based therapies for chronic ischaemic stroke regeneration. This review recommends a path forward to improve hydrogel technology for future clinical translation for stroke. Specifically, we suggest that a better understanding of human host stroke tissue-hydrogel interactions in addition to the effects of scaling up hydrogel volume to human-sized cavities would help guide translation of these second-generation regenerative stroke therapies.


Subject(s)
Brain Ischemia , Stroke , Humans , Hydrogels/pharmacology , Hydrogels/therapeutic use , Stem Cell Transplantation , Stroke/therapy , Tissue Engineering
11.
Pharmaceutics ; 13(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34834261

ABSTRACT

Cladiella-derived natural products have shown promising anticancer properties against many human cancer cell lines. In the present investigation, we found that an ethyl acetate extract of Cladiella pachyclados (CE) collected from the Red Sea could inhibit the human breast cancer (BC) cells (MCF and MDA-MB-231) in vitro (IC50 24.32 ± 1.1 and 9.55 ± 0.19 µg/mL, respectively). The subsequent incorporation of the Cladiella extract into the green synthesis of silver nanoparticles (AgNPs) resulted in significantly more activity against both cancer cell lines (IC50 5.62 ± 0.89 and 1.72 ± 0.36, respectively); the efficacy was comparable to that of doxorubicin with much-enhanced selectivity. To explore the mode of action of this extract, various in silico and network-pharmacology-based analyses were performed in the light of the LC-HRESIMS-identified compounds in the CE extract. Firstly, using two independent machine-learning-based prediction software platforms, most of the identified compounds in CE were predicted to inhibit both MCF7 and MDA-MB-231. Moreover, they were predicted to have low toxicity towards normal cell lines. Secondly, approximately 242 BC-related molecular targets were collected from various databases and used to construct a protein-protein interaction (PPI) network, which revealed the most important molecular targets and signaling pathways in the pathogenesis of BC. All the identified compounds in the extract were then subjected to inverse docking against all proteins hosted in the Protein Data bank (PDB) to discover the BC-related proteins that these compounds can target. Approximately, 10.74% of the collected BC-related proteins were potential targets for 70% of the compounds identified in CE. Further validation of the docking results using molecular dynamic simulations (MDS) and binding free energy calculations revealed that only 2.47% of the collected BC-related proteins could be targeted by 30% of the CE-derived compounds. According to docking and MDS experiments, protein-pathway and compound-protein interaction networks were constructed to determine the signaling pathways that the CE compounds could influence. This paper highlights the potential of marine natural products as effective anticancer agents and reports the discovery of novel anti-breast cancer AgNPs.

12.
Biomater Sci ; 9(21): 7194-7204, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34553708

ABSTRACT

Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses.


Subject(s)
Fibroins , Animals , Biocompatible Materials , Humans , Hydrogels , Immunity, Innate , Mice , Silk
13.
Biomolecules ; 11(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34572579

ABSTRACT

SARS-CoV-2 virus mutations might increase its virulence, and thus the severity and duration of the ongoing pandemic. Global drug discovery campaigns have successfully developed several vaccines to reduce the number of infections by the virus. However, finding a small molecule pharmaceutical that is effective in inhibiting SARS-CoV-2 remains a challenge. Natural products are the origin of many currently used pharmaceuticals and, for this reason, a library of in-house fungal extracts were screened to assess their potential to inhibit the main viral protease Mpro in vitro. The extract of Penicillium citrinum, TDPEF34, showed potential inhibition and was further analysed to identify potential Mpro inhibitors. Following bio-guided isolation, a series of benzodiazepine alkaloids cyclopenins with good-to-moderate activity against SARS-CoV-2 Mpro were identified. The mode of enzyme inhibition of these compounds was predicted by docking and molecular dynamic simulation. Compounds 1 (isolated as two conformers of S- and R-isomers), 2, and 4 were found to have promising in vitro inhibitory activity towards Mpro, with an IC50 values range of 0.36-0.89 µM comparable to the positive control GC376. The in silico investigation revealed compounds to achieve stable binding with the enzyme active site through multiple H-bonding and hydrophobic interactions. Additionally, the isolated compounds showed very good drug-likeness and ADMET properties. Our findings could be utilized in further in vitro and in vivo investigations to produce anti-SARS-CoV-2 drug candidates. These findings also provide critical structural information that could be used in the future for designing potent Mpro inhibitors.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Penicillium/chemistry , SARS-CoV-2/enzymology , Benzodiazepinones/chemistry , Benzodiazepinones/isolation & purification , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/isolation & purification
14.
Egypt Heart J ; 73(1): 77, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34478001

ABSTRACT

BACKGROUND: Cardiovascular system involvement in coronavirus disease-2019 (COVID-19) has gained great interest in the scientific community. MAIN BODY: Several studies reported increased morbidity and mortality among COVID-19 patients who had comorbidities, especially cardiovascular diseases like hypertension and acute coronary syndrome (ACS). COVID-19 may be associated with cardiovascular complications as arrhythmia, myocarditis, and thromboembolic events. We aimed to illustrate the interactions of COVID-19 disease and the cardiovascular system and the consequences on clinical decision as well as public health. CONCLUSIONS: COVID-19 has negative consequences on the cardiovascular system. A high index of suspicion should be present to avoid poor prognosis of those presenting with unusual presentation.

15.
Antibiotics (Basel) ; 10(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439019

ABSTRACT

Flavonoids are a class of bioactive plant-derived natural products that exhibit a broad range of biological activities, including antibacterial ones. Their inhibitory activity toward Gram-positive bacterial was found to be superior to that against Gram-negative ones. In the present study, a number of flavonoid-coated gold nanoparticles (GNPs) were designed to enhance the antibacterial effects of chrysin, kaempferol, and quercetin against a number of Gram-negative bacteria. The prepared GNPs were able to conjugate to these three flavonoids with conjugation efficiency ranging from 41% to 80%. Additionally, they were able to exert an enhanced antibacterial activity in comparison with the free flavonoids and the unconjugated GNPs. Quercetin-coated GNPs were the most active nano-conjugates and were able to penetrate the cell wall of E. coli. A number of in silico experiments were carried out to explain the conjugation efficiency and the antibacterial mechanisms of these flavonoids as follows: (i) these flavonoids can efficiently bind to the glutathione linker on the surface of GNPs via H-bonding; (ii) these flavonoids, particularly quercetin, were able to increase the bacterial membrane rigidity, and hence decrease its functionality; (iii) these flavonoids can inhibit E. coli's DNA gyrase (Gyr-B) with IC50 values ranging from 0.9 to 3.9 µM. In conclusion, these bioactive flavonoid-based GNPs are considered to be very promising antibiotic candidates for further development and evaluation.

16.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198933

ABSTRACT

The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation.

17.
Antibiotics (Basel) ; 10(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066998

ABSTRACT

Since the emergence of the SARS-CoV-2 pandemic in 2019, it has remained a significant global threat, especially with the newly evolved variants. Despite the presence of different COVID-19 vaccines, the discovery of proper antiviral therapeutics is an urgent necessity. Nature is considered as a historical trove for drug discovery, especially in global crises. During our efforts to discover potential anti-SARS CoV-2 natural therapeutics, screening our in-house natural products and plant crude extracts library led to the identification of C. benedictus extract as a promising candidate. To find out the main chemical constituents responsible for the extract's antiviral activity, we utilized recently reported SARS CoV-2 structural information in comprehensive in silico investigations (e.g., ensemble docking and physics-based molecular modeling). As a result, we constructed protein-protein and protein-compound interaction networks that suggest cnicin as the most promising anti-SARS CoV-2 hit that might inhibit viral multi-targets. The subsequent in vitro validation confirmed that cnicin could impede the viral replication of SARS CoV-2 in a dose-dependent manner, with an IC50 value of 1.18 µg/mL. Furthermore, drug-like property calculations strongly recommended cnicin for further in vivo and clinical experiments. The present investigation highlighted natural products as crucial and readily available sources for developing antiviral therapeutics. Additionally, it revealed the key contributions of bioinformatics and computer-aided modeling tools in accelerating the discovery rate of potential therapeutics, particularly in emergency times like the current COVID-19 pandemic.

18.
J Enzyme Inhib Med Chem ; 36(1): 1334-1345, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34139914

ABSTRACT

Recent findings suggested several allosteric pockets on human aromatase that could be utilised for the development of new modulators able to inhibit this enzyme in a new mechanism. Herein, we applied an integrated in-silico-based approach supported by in-vitro enzyme-based and cell-based validation assays to select the best leads able to target these allosteric binding sites from a small library of plant-derived natural products. Chrysin, apigenin, and resveratrol were found to be the best inhibitors targeting the enzyme's substrate access channel and were able to produce a competitive inhibition with IC50 values ranged from 1.7 to 15.8 µM. Moreover, they showed a more potent antiproliferative effect against ER+ (MCF-7) than ER- one (MDA-MB-231) cell lines. On the other hand, both pomiferin and berberine were the best hits for the enzyme's haem-proximal cavity producing a non-competitive inhibition (IC50 15.1 and 21.4 µM, respectively) and showed selective antiproliferative activity towards MCF-7 cell lines.


Subject(s)
Aromatase/metabolism , Breast Neoplasms/drug therapy , Allosteric Regulation , Computer Simulation , Drug Screening Assays, Antitumor , Female , Humans
19.
Molecules ; 26(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062737

ABSTRACT

SARS CoV-2 pandemic is still considered a global health disaster, and newly emerged variants keep growing. A number of promising vaccines have been recently developed as a protective measure; however, cost-effective treatments are also of great importance to support this critical situation. Previously, betulinic acid has shown promising antiviral activity against SARS CoV via targeting its main protease. Herein, we investigated the inhibitory potential of this compound together with three other triterpene congeners (i.e., ursolic acid, maslinic acid, and betulin) derived from olive leaves against the viral main protease (Mpro) of the currently widespread SARS CoV-2. Interestingly, betulinic, ursolic, and maslinic acids showed significant inhibitory activity (IC50 = 3.22-14.55 µM), while betulin was far less active (IC50 = 89.67 µM). A comprehensive in-silico analysis (i.e., ensemble docking, molecular dynamic simulation, and binding-free energy calculation) was then performed to describe the binding mode of these compounds with the enzyme catalytic active site and determine the main essential structural features required for their inhibitory activity. Results presented in this communication indicated that this class of compounds could be considered as a promising lead scaffold for developing cost-effective anti-SARS CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Triterpenes/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Olea/chemistry , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triterpenes/chemistry , Betulinic Acid , Ursolic Acid
20.
Micromachines (Basel) ; 12(5)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063111

ABSTRACT

Sickle cell disease (SCD) is a widespread disease caused by a mutation in the beta-globin gene that leads to the production of abnormal hemoglobin called hemoglobin S. The inheritance of the mutation could be homozygous or heterozygous combined with another hemoglobin mutation. SCD can be characterized by the presence of dense, sickled cells that causes hemolysis of blood cells, anemia, painful episodes, organ damage, and in some cases death. Early detection of SCD can help to reduce the mortality and manage the disease effectively. Therefore, different techniques have been developed to detect the sickle cell disease and the carrier states with high sensitivity and specificity. These techniques can be screening tests such as complete blood count, peripheral blood smears, and sickling test; confirmatory tests such as hemoglobin separation techniques; and genetic tests, which are more expensive and need to be done in centralized labs by highly skilled personnel. However, advanced portable point of care techniques have been developed to provide a low-cost, simple, and user-friendly device for detecting SCD, for instance coupling solubility tests with portable devices, using smartphone microscopic classifications, image processing techniques, rapid immunoassays, and sensor-based platforms. This review provides an overview of the current and emerging techniques for sickle cell disease detection and highlights the different potential methods that could be applied to help the early diagnosis of SCD.

SELECTION OF CITATIONS
SEARCH DETAIL
...