Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558204

ABSTRACT

Hybrid structures often possess superior properties to those of their component materials. This arises from changes in the structural or physical properties of the new materials. Here, we investigate the structural, electronic, and gas-adsorption properties of hybrid structures made from graphene/hexagonal boron nitride and 2H-molybdenum disulfide (G/BN@MoS2) monolayers. We consider hybrid systems in which the G/BN patch is at the Mo plane (model I) and the S plane (model II). We find that the implanted hexagon of G or BN in MoS2 alters its electronic properties: G@MoS2 (I,II) are metallic, while BN@MoS2 (I) is an n-type conducting and BN@MoS2 (II) is semiconducting. We study the molecular adsorption of some diatomic gases (H2, OH, N2, NO, CO), triatomic gases (CO2, NO2, H2S, SO2), and polyatomic gases (COOH, CH4, and NH3) on our hybrid structures while considering multiple initial adsorption sites. Our results suggest that the hybrid systems may be suitable materials for some applications: G@MOS2 (I) for oxygen reduction reactions, BN@MoS2 (I,II) for NH3-based hydrogen production, and G@MoS2 (I) and BN@MoS2 (I,II) for filtration of No, Co, SO2, H2S, and NO2.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014604

ABSTRACT

Recent advances in experimental techniques allow for the fabrication of hybrid structures. Here, we study the electronic and molecular adsorption properties of the graphene (G)/hexagonal boron nitride (h-BN)-MXenes (Mo2C) hybrid nanosheets. We use first-principles calculations to explore the structure and electronic properties of the hybrid structures of G-2H-Mo2C and h-BN-2H-Mo2C with two different oxygen terminations of the Mo2C surface. The embedding of G or h-BN patches creates structural defects at the patch-Mo2C border and adds new states in the vicinity of the Fermi energy. Since this can be utilized for molecular adsorption and/or sensing, we investigate the ability of the G-M-O1 and BN-M-O1 hybrid structures to adsorb twelve molecules. Generally, the adsorption on the hybrid systems is significantly higher than on the pristine systems, except for N2 and H2, which are weakly adsorbed on all systems. We find that OH, NO, NO2, and SO2 are chemisorbed on the hybrid systems. COOH may be chemisorbed, or it may dissociate depending on its location at the edge between the G/h-BN and the MXene. NH3 is chemisorbed/physisorbed on the BN/G-M-O1 systems. CO, H2S, CO2, and CH4 are physisorbed on the hybrid systems. Our results indicate that the studied hybrid systems can be used for molecular filtration/sensing and catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...