Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38586020

ABSTRACT

Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly (acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We further demonstrated the biocompatibility and cellular effects of these materials and conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.

2.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588428

ABSTRACT

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Subject(s)
Receptors, Cholinergic , Receptors, Nicotinic , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Muscles , Ion Transport , Lipids
3.
Cancers (Basel) ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35626052

ABSTRACT

The subpopulations of tumor pericytes undergo pathological phenotype switching, affecting their normal function in upholding structural stability and cross-communication with other cells. In the case of pancreatic ductal adenocarcinoma (PDAC), a significant portion of blood vessels are covered by an α-smooth muscle actin (αSMA)-expressing pericyte, which is normally absent from capillary pericytes. The DesminlowαSMAhigh phenotype was significantly correlated with intratumoral hypoxia and vascular leakiness. Using an in vitro co-culture system, we demonstrated that cancer cell-derived exosomes could induce ectopic αSMA expression in pericytes. Exosome-treated αSMA+ pericytes presented altered pericyte markers and an acquired immune-modulatory feature. αSMA+ pericytes were also linked to morphological and biomechanical changes in the pericyte. The PDAC exosome was sufficient to induce αSMA expression by normal pericytes of the healthy pancreas in vivo, and the vessels with αSMA+ pericytes were leaky. This study demonstrated that tumor pericyte heterogeneity could be dictated by cancer cells, and a subpopulation of these pericytes confers a pathological feature.

4.
ACS Appl Bio Mater ; 5(5): 2163-2175, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35417133

ABSTRACT

Biological nanoparticles, such as exosomes, offer an approach to drug delivery because of their innate ability to transport biomolecules. Exosomes are derived from cells and an integral component of cellular communication. However, the cellular cargo of human exosomes could negatively impact their use as a safe drug carrier. Additionally, exosomes have the intrinsic yet enigmatic, targeting characteristics of complex cellular communication. Hence, harnessing the natural transport abilities of exosomes for drug delivery requires predictably targeting these biological nanoparticles. This manuscript describes the use of two chemical modifications, incorporating a neuropilin receptor agonist peptide (iRGD) and a hypoxia-responsive lipid for targeting and release of an encapsulated drug from bovine milk exosomes to triple-negative breast cancer cells. Triple-negative breast cancer is a very aggressive and deadly form of malignancy with limited treatment options. Incorporation of both the iRGD peptide and hypoxia-responsive lipid into the lipid bilayer of bovine milk exosomes and encapsulation of the anticancer drug, doxorubicin, created the peptide targeted, hypoxia-responsive bovine milk exosomes, iDHRX. Initial studies confirmed the presence of iRGD peptide and the exosomes' ability to target the αvß3 integrin, overexpressed on triple-negative breast cancer cells' surface. These modified exosomes were stable under normoxic conditions but fragmented in the reducing microenvironment created by 10 mM glutathione. In vitro cellular internalization studies in monolayer and three-dimensional (3D) spheroids of triple-negative breast cancer cells confirmed the cell-killing ability of iDHRX. Cell viability of 50% was reached at 10 µM iDHRX in the 3D spheroid models using four different triple-negative breast cancer cell lines. Overall, the tumor penetrating, hypoxia-responsive exosomes encapsulating doxorubicin would be effective in reducing triple-negative breast cancer cells' survival.


Subject(s)
Exosomes , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Hypoxia/drug therapy , Lipids/therapeutic use , Milk , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
5.
ACS Appl Mater Interfaces ; 14(6): 7671-7679, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35113515

ABSTRACT

Integrin-targeting arginine-glycine-aspartic acid (RGD)-based nanocarriers have been widely used for tumor imaging, monitoring of tumor development, and delivery of anticancer drugs. However, the thermodynamics of an RGD-integrin formation and dissociation associated with binding dynamics, affinity, and stability remains unclear. Here, we probed the binding strength of the binary complex to live pancreatic cancer cells using single-molecule binding force spectroscopy methods, in which RGD peptides were functionalized on a force probe tip through poly(ethylene glycol) (PEG)-based bifunctional linker molecules. While the density of integrin αV receptors on the cell surface varies more than twofold from cell line to cell line, the individual RGD-integrin complexes exhibited a cell type-independent, monovalent bond strength. The load-dependent bond strength of multivalent RGD-integrin interactions scaled sublinearly with increasing bond number, consistent with the noncooperative, parallel bond model. Furthermore, the multivalent bonds ruptured sequentially either by one or in multiples, and the force strength was comparable to the synchronous rupture force. Comparison of energy landscapes of the bond number revealed a substantial decrease of kinetic off-rates for multivalent bonds, along with the increased width of the potential well and the increased potential barrier height between bound and unbound states, enhancing the stability of the multivalent bonds between them.


Subject(s)
Integrins , Pancreatic Neoplasms , Cell Membrane/metabolism , Humans , Integrins/metabolism , Oligopeptides/chemistry , Polyethylene Glycols/chemistry
6.
Oncotarget ; 12(12): 1165-1177, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34136085

ABSTRACT

The changes in cellular structure play an important role in cancer cell development, progression, and metastasis. By exploiting single-cell, force spectroscopy methods, we probed biophysical and biomechanical kinetics (stiffness, morphology, roughness, adhesion) of brain, breast, prostate, and pancreatic cancer cells with standard chemotherapeutic drugs in normoxia and hypoxia over 12-24 hours. After exposure to the drugs, we found that brain, breast, and pancreatic cancer cells became approximately 55-75% less stiff, while prostate cancer cells became more stiff, due to either drug-induced disruption or reinforcement of cytoskeletal structure. However, the rate of the stiffness change decreased up to 2-folds in hypoxia, suggesting a correlation between cellular stiffness and drug resistance of cancer cells in hypoxic tumor microenvironment. Also, we observed significant changes in the cell body height, surface roughness, and cytoadhesion of cancer cells after exposure to drugs, which followed the trend of stiffness. Our results show that a degree of chemotherapeutic drug effects on biomechanical and biophysical properties of cancer cells is distinguishable in normoxia and hypoxia, which are correlated with alteration of cytoskeletal structure and integrity during drug-induced apoptotic process.

7.
J Phys Chem B ; 125(22): 5750-5756, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34038124

ABSTRACT

Single-molecule measurements of protein dynamics help unveil the complex conformational changes and transitions that occur during ligand binding and catalytic processes. Using high-resolution single-molecule nanocircuit techniques, we have investigated differences in the conformational dynamics and transitions of lysozyme interacting with three ligands: peptidoglycan substrate, substrate-based chitin analogue, and indole derivative inhibitors. While processing peptidoglycan, lysozyme followed one of the two mechanistic pathways for the hydrolysis of the glycosidic bonds: a concerted mechanism inducing direct conformational changes from open to fully closed conformations or a nonconcerted mechanism involving transient pauses in intermediate conformations between the open and closed conformations. In the presence of either chitin or an indole inhibitor, lysozyme was unable to access the fully closed conformation where catalysis occurs. Instead, lysozymes' conformational closures terminated at slightly closed, "excited" conformations that were approximately one-quarter of the full hinge-bending range. With the indole inhibitor, lysozyme reached this excited conformation in a single step without any evidence of rate-liming intermediates, but the same conformational motions with chitin involved three hidden, intermediate processes and features similar to the nonconcerted peptidoglycan mechanism. The similarities suggest that these hidden processes involve attempts to accommodate imperfectly aligned polysaccharides in the active site. The results provide a detailed glimpse of the enzyme-ligand interplay at the crux of molecular recognition, enzyme specificity, and catalysis.


Subject(s)
Muramidase , Binding Sites , Catalysis , Catalytic Domain , Ligands , Muramidase/metabolism , Protein Binding , Protein Conformation
8.
ACS Appl Mater Interfaces ; 12(37): 41794-41801, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32830486

ABSTRACT

Immobilizing enzymes on nanoparticles (NPs) enhances the cost-efficiency of biocatalysis; however, when the substrates are large, it becomes difficult to separate the enzyme@NP from the products while avoiding leaching or damage of enzymes in the reaction medium. Metal-organic framework (MOF)-coated magnetic NPs (MNPs) offer efficient magnetic separation and enhanced enzyme protection; however, the involved enzymes/substrates have to be smaller than the MOF apertures. A potential solution to these challenges is coprecipitating metal/ligand with enzymes on the MNP surface, which can partially bury (protect) the enzyme below the composite surface while exposing the rest of the enzyme to the reaction medium for catalysis of larger substrates. Here, to prove this concept, we show that using Ca2+ and terephthalic acid (BDC), large-substrate enzymes can be encapsulated in CaBDC-MOF layers coated on MNPs via an enzyme-friendly, aqueous-phase one-pot synthesis. Interestingly, we found that using MNPs as the nuclei of crystallization, the composite size can be tuned so that nanoscale composites were formed under low Ca2+/BDC concentrations, while microscale composites were formed under high Ca2+/BDC concentrations. While the microscale composites showed significantly enhanced reusability against a non-structured large substrate, the nanoscale composites displayed enhanced catalytic efficiency against a rigid, crystalline-like large substrate, starch, likely due to the improved diffusivity of the nanoscale composites. To our best knowledge, this is the first report on aqueous-phase one-pot synthesis of size-tunable enzyme@MOF/MNP composites for large-substrate biocatalysis. Our platform can be applied to immobilize other large-substrate enzymes with enhanced reusability and tunable sizes.


Subject(s)
Calcium/chemistry , Magnetite Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Muramidase/metabolism , Phthalic Acids/chemistry , Biocatalysis , Calcium/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Metal-Organic Frameworks/metabolism , Muramidase/chemistry , Particle Size , Phthalic Acids/metabolism , Surface Properties
9.
ACS Appl Mater Interfaces ; 12(20): 23119-23126, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32338863

ABSTRACT

Although enzyme immobilization has improved many areas, biocatalysis involving large-size substrates is still challenging for immobilization platform design because of the protein damage under the often "harsh" reaction conditions required for these reactions. Our recent efforts indicate the potential of using Metal-Organic Frameworks (MOFs) to partially confine enzymes on the surface of MOF-based composites while offering sufficient substrate contact. Still, improvements are required to expand the feasible pH range and the efficiency of contacting substrates. In this contribution, we discovered that Zeolitic Imidazolate Framework (ZIF) and a new calcium-carboxylate based MOF (CaBDC) can both be coprecipitated with a model large-substrate enzyme, lysozyme (lys), to anchor the enzyme on the surface of graphite oxide (GO). We observed lys activity against its native substrate, bacterial cell walls, indicating lys was confined on composite surface. Remarkably, lys@GO/CaBDC displayed a stronger catalytic efficiency at pH 6.2 as compared to pH 7.4, indicating CaBDC is a good candidate for biocatalysis under acidic conditions as compared to ZIFs which disassemble under pH < 7. Furthermore, to understand the regions of lys being exposed to the reaction medium, we carried out a site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy study. Our data showed a preferential orientation of lys in GO/ZIF composite, whereas a random orientation in GO/CaBDC. This is the first report on immobilizing solution-state large-substrate enzymes on GO surface using two different MOFs via one-pot synthesis. These platforms can be generalized to other large-substrate enzymes to carry out catalysis under the optimal buffer/pH conditions. The orientation of enzyme at the molecular level on composite surfaces is critical for guiding the rational design of new composites.


Subject(s)
Enzymes, Immobilized/chemistry , Graphite/chemistry , Metal-Organic Frameworks/chemistry , Muramidase/chemistry , Biocatalysis , Cell Wall/chemistry , Hydrogen-Ion Concentration , Micrococcus , Protein Domains
10.
ACS Biomater Sci Eng ; 5(3): 1354-1365, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-33405653

ABSTRACT

Hyperbranched polymer-derived drug nanocarriers have been synthesized that can change sizes selectively in response to pH. These constructs were composed of tertiary amine-conjugated polycarbonate blocks "grafted from" a hyperbranched polyester polyol core. At neutral pH, unprotonated polycarbonate arms stabilized the copolymer aggregates in the form of nanoparticles with hydrodynamic diameters ranging from 150 to 190 nm. Upon lowering of pH, these larger aggregates disassembled into smaller nanoparticles with diameters of 3-5 nm as directed by protonation of tertiary amine side-chains. The pH-dependent reduction of particle sizes was evident by titrimetric, spectroscopic, dynamic light scattering, transmission electron, and atomic force microscopy-based experiments. We observed that these copolymeric nanoparticles could be loaded with dye and drug molecules either by noncovalent encapsulation or by covalent conjugation. A pH-induced disassembly of the aggregates initiated rapid release of the encapsulated payload, but not of the conjugated ones, thus establishing a controlled rate of therapeutic delivery from the nanostructures over an extended period. We envision that such systems can be used for drug delivery applications where nanoparticle sizes critically govern therapeutic efficiency in a vasculature-poor disease microenvironment such as desmoplasia in pancreatic cancer. Hence, we tested the cellular uptake, cytotoxicity, and chemotherapeutic potential of the size-modifiable nanoaggregates using gemcitabine as a model drug in pancreatic cancer setting. We observed that assembled nanoparticles were biocompatible to noncancerous cells, showed pH-dependent effects on cellular uptake as well as promoted accumulation within cancer cells cultured as 3D spheroids. We also found that when conjugated with gemcitabine, the resulting drug-loaded nanoparticles suppressed proliferation of cancer cells. Collectively, the studies suggested that these synthesized, pH-disassembling nanoscale platform will find applications as biomaterials for constructing a size-transformable drug nanocarriers where reduction of size takes effect near localized disease targets in response to microenvironmental triggers.

SELECTION OF CITATIONS
SEARCH DETAIL
...