Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1866(3): 130071, 2022 03.
Article in English | MEDLINE | ID: mdl-34942318

ABSTRACT

BACKGROUND: Thiamine diphosphate (ThDP), an indispensable cofactor for oxidative energy metabolism, is synthesized through the reaction thiamine + ATP ⇆ ThDP + AMP, catalyzed by thiamine pyrophosphokinase 1 (TPK1), a cytosolic dimeric enzyme. It was claimed that the equilibrium of the reaction is in favor of the formation of thiamine and ATP, at odds with thermodynamic calculations. Here we show that this discrepancy is due to feedback inhibition by the product ThDP. METHODS: We used a purified recombinant mouse TPK1 to study reaction kinetics in the forward (physiological) and for the first time also in the reverse direction. RESULTS: Keq values reported previously are strongly underestimated, due to the fact the reaction in the forward direction rapidly slows down and reaches a pseudo-equilibrium as ThDP accumulates. We found that ThDP is a potent non-competitive inhibitor (Ki ≈ 0.4 µM) of the forward reaction. In the reverse direction, a true equilibrium is reached with a Keq of about 2 × 10-5, strongly in favor of ThDP formation. In the reverse direction, we found a very low Km for ThDP (0.05 µM), in agreement with a tight binding of ThDP to the enzyme. GENERAL SIGNIFICANCE: Inhibition of TPK1 by ThDP explains why intracellular ThDP levels remain low after administration of even very high doses of thiamine. Understanding the consequences of this feedback inhibition is essential for developing reliable methods for measuring TPK activity in tissue extracts and for optimizing the therapeutic use of thiamine and its prodrugs with higher bioavailability under pathological conditions.


Subject(s)
Thiamine Pyrophosphate
2.
Front Genet ; 12: 688488, 2021.
Article in English | MEDLINE | ID: mdl-34650588

ABSTRACT

Genome wide association meta-analysis identified ST3GAL3, a gene encoding the beta-galactosidase-alpha-2,3-sialyltransferase-III, as a risk gene for attention-deficit/hyperactivity disorder (ADHD). Although loss-of-function mutations in ST3GAL3 are implicated in non-syndromic autosomal recessive intellectual disability (NSARID) and West syndrome, the impact of ST3GAL3 haploinsufficiency on brain function and the pathophysiology of neurodevelopmental disorders (NDDs), such as ADHD, is unknown. Since St3gal3 null mutant mice display severe developmental delay and neurological deficits, we investigated the effects of partial inactivation of St3gal3 in heterozygous (HET) knockout (St3gal3 ±) mice on behavior as well as expression of markers linked to myelination processes and sialylation pathways. Our results reveal that male St3gal3 HET mice display cognitive deficits, while female HET animals show increased activity, as well as increased cognitive control, compared to their wildtype littermates. In addition, we observed subtle alterations in the expression of several markers implicated in oligodendrogenesis, myelin formation, and protein sialylation as well as cell adhesion/synaptic target glycoproteins of ST3GAL3 in a brain region- and/or sex-specific manner. Taken together, our findings indicate that haploinsufficiency of ST3GAL3 results in a sex-dependent alteration of cognition, behavior and markers of brain plasticity.

3.
Biomedicines ; 8(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962139

ABSTRACT

Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.

4.
Neuropharmacology ; 168: 108018, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32113967

ABSTRACT

Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.


Subject(s)
Cadherins/deficiency , Cognition/physiology , Raphe Nuclei/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Animals , Cadherins/genetics , Female , Male , Maze Learning/physiology , Mice , Mice, Knockout , Raphe Nuclei/chemistry , Serotonergic Neurons/chemistry , Serotonin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...