Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 249: 118246, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38278509

ABSTRACT

The Earth's history is documented in human civilizations, soil layers, river movement, and quiet sediments throughout millennia. This investigation explores the significant legacy of environmental toxins in these key planet components. Understanding how ancient activity shaped the terrain is crucial as mankind faces environmental issues. This interdisciplinary study uses environmental science, archaeology, and geology to uncover Earth's mysteries. It illuminates the dynamic processes that have built our globe by studying pollutants and soil, water, and sediments. This research follows human actions, both intentional and unintentional, from ancient civilizations through contemporary industrialization and their far-reaching effects. Environmental destiny examines how contaminants affect ecosystems and human health. This study of past contamination helps solve modern problems including pollution cleanup, sustainable land management, and water conservation. This review studies reminds us that our previous activities still affect the ecosystem in a society facing rapid urbanisation and industrialization. It emphasises the importance of environmental stewardship and provides a framework for making educated choices to reduce toxins in soil, water, and sediments. Discovery of Earth's secrets is not only a historical curiosity; it's a necessary step towards a sustainable and peaceful cohabitation with our home planet.


Subject(s)
Geologic Sediments , Geologic Sediments/chemistry , Geologic Sediments/analysis , Soil Pollutants/analysis , Humans , Earth, Planet , Soil/chemistry , Environmental Monitoring/history , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Environmental Pollution/history , Environmental Pollution/analysis
2.
Chemosphere ; 335: 139125, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37277002

ABSTRACT

Currently, novel photocatalysts have attracted increasing attention to effectively utilizing abundant solar energy to meet the energy demands of humans and mitigate environmental burdens. In this work, we developed a novel and highly efficient photocatalyst consisting of In2S3 doped with two elements (Ag and Zn) and decorated with reduced graphene oxide (rGO) sheets. The crystal structure, morphology, electrical properties, and optical properties of the prepared materials were studied using various analytical techniques, and their photocatalytic activity was thoroughly investigated. It was confirmed that within 10 min, over 97% decomposition of organic dyes was achieved by using Ag-Zn co-doped In2S3/rGO catalyst, while only 50 and 60% decompositions were achieved by conventional pure In2S3 and In2S3/rGO nanocomposite, respectively. Its photoelectrochemical (PEC) water-splitting performance was also significantly improved (∼120%) compared with pure In2S3 nanoparticles. This study provides a new vision of using Ag-Zn:In2S3 decorated on rGO sheets as an efficient photocatalyst under solar light irradiation for environmental remediation and hydrogen production.


Subject(s)
Environmental Pollutants , Graphite , Humans , Light , Graphite/chemistry , Zinc
3.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36234454

ABSTRACT

Heterojunction Cu(In,Ga)Se2 (CIGS) solar cells comprise a substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al. Here, Al-doped zinc oxide (AZO) films were deposited by magnetron sputtering, and the substrate temperature was optimized for CIGS solar cells with two types of CIGS light absorbers with different material properties fabricated by three-stage co-evaporation and two-step metallization followed by sulfurization after selenization (SAS). The microstructure and optoelectronic properties of the AZO thin films fabricated at different substrate temperatures (150-550 °C) were analyzed along with their effects on the CIGS solar cell performance. X-ray diffraction results confirmed that all the deposited AZO films have a hexagonal wurtzite crystal structure regardless of substrate temperature. The optical and electrical properties of the AZO films improved significantly with increasing substrate temperature. Photovoltaic performances of the two types of CIGS solar cells were influenced by changes in the AZO substrate temperature. For the three-stage co-evaporated CIGS cell, as the sputter-deposition temperature of the AZO layer was raised from 150 °C to 550 °C, the efficiencies of CIGS devices decreased monotonically, which suggests the optimum AZO deposition temperature is 150 °C. In contrast, the cell efficiency of CIGS devices fabricated using the two-step SAS-processed CIGS absorbers improved with increasing the AZO deposition temperature from 150 to 350 °C. However, the rise in AZO deposition temperature to 550 °C decreased the cell efficiency, indicating that the optimum AZO deposition temperature was 350 °C. The findings of this study provide insights for the efficient fabrication of CIGS solar cells considering the correlation between CIGS absorber characteristics and AZO layer deposition temperature.

4.
Nanomaterials (Basel) ; 12(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055298

ABSTRACT

Energy consumption and environmental pollution are major issues faced by the world. The present study introduces a single solution using SnS2 for these two major global problems. SnS2 nanoparticles and thin films were explored as an adsorbent to remove organic toxic materials (Rhodamine B (RhB)) from water and an alternative to the toxic cadmium sulfide (CdS) buffer for thin-film solar cells, respectively. Primary characterization tools such as X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), and UV-Vis-NIR spectroscopy were used to analyze the SnS2 nanoparticles and thin films. At a reaction time of 180 min, 0.4 g/L of SnS2 nanoparticles showed the highest adsorption capacity of 85% for RhB (10 ppm), indicating that SnS2 is an appropriate adsorbent. The fabricated Cu(In,Ga)Se2 (CIGS) device with SnS2 as a buffer showed a conversion efficiency (~5.1%) close to that (~7.5%) of a device fabricated with the conventional CdS buffer, suggesting that SnS2 has potential as an alternative buffer.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803574

ABSTRACT

Tin sulfide polymorph (π-SnS) nanoparticles exhibit promising optoelectrical characteristics for photovoltaic and hydrogen production performance, mainly because of the possibility of tuning their properties by adjusting the synthesis conditions. This study demonstrates a chemical approach to synthesize π-SnS nanoparticles and the engineering of their properties by altering the Sn precursor concentration (from 0.04 M to 0.20 M). X-ray diffraction and Raman studies confirmed the presence of pure cubic SnS phase nanoparticles with good crystallinity. SEM images indicated the group of cloudy shaped grains, and XPS results confirmed the presence of Sn and S in the synthesized nanoparticles. Optical studies revealed that the estimated energy bandgap values of the as-synthesized π-SnS nanoparticles varied from 1.52 to 1.68 eV. This work highlights the effects of the Sn precursor concentration on the properties of the π-SnS nanoparticles and describes the bandgap engineering process. Optimized π-SnS nanoparticles were used to deposit nanocrystalline π-SnS thin films using the drop-casting technique, and their physical properties were improved by annealing (300 °C for 2 h).

6.
Nanomaterials (Basel) ; 10(2)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019191

ABSTRACT

A graphene-cadmium sulfide (Gr-CdS) nanocomposite was prepared by a chemical solution method, and its material properties were characterized by several analysis techniques. The synthesized pure CdS nanoparticles (NPs) and Gr-CdS nanocomposites were confirmed to have a stoichiometric atomic ratio (Cd/S = 1:1). The Cd 3d and S 2p peaks of the Gr-CdS nanocomposite appeared at lower binding energies compared to those of the pure CdS NPs according to X-ray photoelectron spectroscopy analyses. The formation of the Gr-CdS nanocomposite was also evidenced by the structural analysis using Raman spectroscopy and X-ray diffraction. Transmission electron microscopy confirmed that CdS NPs were uniformly distributed on the graphene sheets. The absorption spectra of both the Gr-CdS nanocomposite and pure CdS NPs thin films showed an absorption edge at 550 nm related to the energy band gap of CdS (~2.42 eV). The Cu(In,Ga)Se2 thin film photovoltaic device with Gr-CdS nanocomposite buffer layer showed a higher electrical conversion efficiency than that with pure CdS NPs thin film buffer layer. In addition, the water splitting efficiency of the Gr-CdS nanocomposite was almost three times higher than that of pure CdS NPs.

7.
Materials (Basel) ; 12(9)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31035494

ABSTRACT

The typical structure of high efficiency Cu(InGa)Se2 (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by considering the surface roughness of CIGS light absorbers. The i-ZnO layers with different thicknesses from 30 to 170 nm were deposited via sputtering. The optical properties, microstructures, and morphologies of the i-ZnO thin films with different thicknesses were characterized, and their effects on the CIGS solar cell device properties were explored. Two types of CIGS absorbers prepared by three-stage co-evaporation and two-step sulfurization after the selenization (SAS) processes showed a difference in the preferred crystal orientation, morphology, and surface roughness. During the subsequent post-processing for the fabrication of the glass/Mo/CIGS/CdS/i-ZnO/AZO device, the change in the i-ZnO thickness influenced the performance of the CIGS devices. For the three-stage co-evaporated CIGS cell, the increase in the thickness of the i-ZnO layer from 30 to 90 nm improved the shunt resistance (RSH), open circuit voltage, and fill factor (FF), as well as the conversion efficiency (10.1% to 11.8%). A further increas of the i-ZnO thickness to 170 nm, deteriorated the device performance parameters, which suggests that 90 nm is close to the optimum thickness of i-ZnO. Conversely, the device with a two-step SAS processed CIGS absorber showed smaller values of the overall RSH (130-371 Ω cm2) than that of the device with a three-stage co-evaporated CIGS absorber (530-1127 Ω cm2) ranging from 30 nm to 170 nm of i-ZnO thickness. Therefore, the value of the shunt resistance was monotonically increased with the i-ZnO thickness ranging from 30 to 170 nm, which improved the FF and conversion efficiency (6.96% to 8.87%).

SELECTION OF CITATIONS
SEARCH DETAIL
...