Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 88: 102416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796863

ABSTRACT

BACKGROUND: High-grade urothelial carcinoma either non-Schistosoma (NS-UBC) or Schistosoma (S-UBC)-associated is the tenth cause of death worldwide and represents a serious therapeutic problem. AIM: Evaluation of the immmunohistochemical expression of tumor necrosis factor-alpha (TNFα), epidermal growth factor receptor (EGFR), programmed cell death protein-1 (PDL1), estrogen receptor-alpha (ERα) and UroplakinIII, in the high-grade in NS-UBC and S-UBC as potential prognostic and therapeutic targets analyzed through estimation of area percentage, optical density and international pathological scoring system for each marker. MATERIAL AND METHODS: Sixty high grade urothelial carcinoma cases were enrolled in the study (30 cases of NS-UBC and 30 cases of S-UBC). The cases were immunohistochemically-assessed for TNFα, EGFR, PDL1, ERα and Uroplakin III expression. In S-UBC, parasite load was also evaluated for correlation with the immunohistochemical markers' expression in S-UBC. RESULTS: The area percentage of immune-expression of TNFα and EGFR was higher in S-UBC compared to NS-UBC. On the other hand, the NS-UBC displayed statistically-higher expression of PDL1 and uroplakinIII (p-value <0.001). ERα revealed higher, yet, non-significant expressions in S-UBC compared to NS-UBC (p-value =0.459). PDL1 expression showed the most superior record regarding area percentage (64.6± 34.5). Regarding optical density, TNF-α showed the highest transmittance expression (2.4 ± 0.9). EGFR positively correlated with PDL1 in S-UBC (r= 0.578, p-value =0.001) whereas in NS-UBC, TNFα and PDL1 (r=0.382, p-value=0.037) had positive correlation. Schistosoma eggs in tissues oppose uroplakin III expression and trigger immunomodulation via PDL1. CONCLUSION: Due to lower UroplakinIII expression, S-UBC is supposed to have a poorer prognosis. Hormonal therapy is not hypothesized due to a very minimal ERα expression in both NS-UBC and S-UBC. Regarding immunotherapy, anti-TNF-α is suggested for S-UBC whilst in NS-UBC, blockading PDL1 might be useful. Targeted EGFR therapy seems to carry emphasized outcomes in S-UBC. Correlations encourage combined immune therapy in NS-UBC; nevertheless, in S-UBC, combined anti-EGFR and PDL1 seem to be of benefit.


Subject(s)
Biomarkers, Tumor , Humans , Male , Female , Biomarkers, Tumor/metabolism , Animals , Middle Aged , Aged , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/parasitology , Urinary Bladder Neoplasms/pathology , ErbB Receptors/metabolism , Schistosoma/metabolism , B7-H1 Antigen/metabolism , Schistosomiasis/parasitology , Schistosomiasis/metabolism , Estrogen Receptor alpha/metabolism , Urothelium/pathology , Urothelium/metabolism , Urothelium/parasitology , Tumor Necrosis Factor-alpha/metabolism
2.
Mol Cell Biochem ; 478(6): 1245-1250, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36282351

ABSTRACT

The loss of cardiomyocytes after myocardial infarction (MI) leads to heart failure. Recently, we demonstrated that transient overexpression of 4 cell cycle factors (4F), using a polycistronic non-integrating lentivirus (TNNT2-4F-NIL) resulted in significant improvement in cardiac function in a rat model of MI. Yet, it is crucial to demonstrate the reversal of the heart failure-related pathophysiological manifestations, such as renin-angiotensin-aldosterone system activation (RAAS). To assess that, Fisher 344 rats were randomized to receive TNNT2-4F-NIL or control virus seven days after coronary occlusion for 2 h followed by reperfusion. 4 months after treatment, N-terminal pro-brain natriuretic peptide, plasma renin activity, and aldosterone levels returned to the normal levels in rats treated with TNNT2-4F-NIL but not in vehicle-treated rats. Furthermore, the TNNT2-4F-NIL-treated group showed significantly less liver and kidney congestion than vehicle-treated rats. Thus, we conclude that in rat models of MI, TNNT2-4F-NIL reverses RAAS activation and subsequent systemic congestion.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Rats , Aldosterone/metabolism , Cell Cycle , Heart Failure/genetics , Heart Failure/therapy , Heart Failure/metabolism , Kidney/metabolism , Myocardial Infarction/metabolism , Renin/genetics , Renin/metabolism , Renin-Angiotensin System
SELECTION OF CITATIONS
SEARCH DETAIL
...