Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067170

ABSTRACT

Periodontal ligament (PDL) stem-like cells (PDLSCs) are promising for regeneration of the periodontium because they demonstrate multipotency, high proliferative capacity, and the potential to regenerate bone, cementum, and PDL tissue. However, the transplantation of autologous PDLSCs is restricted by limited availability. Since PDLSCs are derived from neural crest cells (NCs) and NCs persist in adult PDL tissue, we devised to promote the regeneration of the periodontium by activating NCs to differentiate into PDLSCs. SK-N-SH cells, a neuroblastoma cell line that reportedly has NC-like features, seeded on the extracellular matrix of PDL cells for 2 weeks, resulted in the significant upregulation of PDL marker expression. SK-N-SH cell-derived PDLSCs (SK-PDLSCs) presented phenotypic characteristics comparable to induced pluripotent stem cell (iPSC)-derived PDLSCs (iPDLSCs). The expression levels of various hyaluronic acid (HA)-related genes were upregulated in iPDLSCs and SK-PDLSCs compared with iPSC-derived NCs and SK-N-SH cells, respectively. The knockdown of CD44 in SK-N-SH cells significantly inhibited their ability to differentiate into SK-PDLSCs, while low-molecular HA (LMWHA) induction enhanced SK-PDLSC differentiation. Our findings suggest that SK-N-SH cells could be applied as a new model to induce the differentiation of NCs into PDLSCs and that the LMWHA-CD44 relationship is important for the differentiation of NCs into PDLSCs.


Subject(s)
Neural Crest , Periodontal Ligament , Adult , Humans , Hyaluronic Acid/pharmacology , Cells, Cultured , Periodontium
2.
Odontology ; 110(1): 127-137, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34382118

ABSTRACT

The aim of this study was to characterize a clonal human periodontal ligament (PDL) stem cell line (line 2-23 cells) cultured with root canal sealers based on methacrylate resin (SuperBond sealer; SB), bioactive glass (Nishika Canal Sealer BG; BG), or silicon (GuttaFlow 2; GF). The sealers were set in rubber molds to form sealer discs. Line 2-23 cells were cultured with or without the discs for 3 days. The cell viability was evaluated by direct cell counting and MTT assay. Inflammation-, PDL-, collagen-, and cell cycle-related gene expression was investigated by real-time RT-PCR. Collagen production was analyzed by Picro Sirius Red staining. Calcium ion concentration in the culture was measured by a QuantiChrom calcium assay kit. Line 2-23 cells survived when cultured with GF discs, but decreased cell viability was observed with SB and BG discs. The expression of inflammation-related genes was higher in cells cultured with SB discs, and expression of PDL-related genes was lower in cells exposed to SB and BG discs. These discs also down-regulated collagen production in line 2-23 cells. BG discs increased calcium ion concentration in the culture medium. Cells exposed to GF discs exhibited the same inflammation-, PDL-, collagen-, and cell cycle-related gene expression and collagen production as untreated cells. These results suggested that the characteristics of line 2-23 cells cultured with GF discs was highly resemble to untreated cells throughout the 3 days of the culture model.


Subject(s)
Root Canal Filling Materials , Silicon , Cell Line , Dental Pulp Cavity , Epoxy Resins , Humans , Materials Testing , Methacrylates , Periodontal Ligament , Root Canal Filling Materials/pharmacology
3.
Sci Rep ; 11(1): 22091, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764383

ABSTRACT

White mineral trioxide aggregate (WMTA) is a root canal treatment material, which is known to exhibit a dark brown color when in contact with sodium hypochlorite solution (NaOCl). This study aimed to investigate the effects of NaOCl on the surface properties of WMTA discs and WMTA-induced osteoblastic differentiation of periodontal ligament stem cells (PDLSCs). Mixed WMTA (ProRoot MTA) was filled into the molds to form WMTA discs. These discs were immersed in distilled water (D-WMTA) or 5% NaOCl (Na-WMTA). Their surface structures and Ca2+ release level was investigated. Moreover, they were cultured with a clonal human PDLSC line (line 1-17 cells). The main crystal structures of Na-WMTA were identical to the structures of D-WMTA. Globular aggregates with polygonal and needle-like crystals were found on D-WMTA and Na-WMTA, which included Ca, Si, Al, C and O. However, many amorphous structures were also identified on Na-WMTA. These structures consisted of Na and Cl, but did not include Ca. NaOCl immersion also reduced Ca2+ release level from whole WMTA discs. Line 1-17 cells cultured with D-WMTA formed many mineralized nodules and exhibited high expression levels of osteoblast-related genes. However, cells incubated with Na-WMTA generated a small number of nodules and showed low expression levels of osteoblast-related genes. These results indicated that NaOCl reduced Ca2+ release from WMTA by generating amorphous structures and changing its elemental distribution. NaOCl may also partially abolish the ability of WMTA to stimulate osteoblastic differentiation of PDLSCs.


Subject(s)
Aluminum Compounds/pharmacology , Calcium Compounds/pharmacology , Cell Differentiation/drug effects , Osteoblasts/drug effects , Oxides/pharmacology , Periodontal Ligament/drug effects , Root Canal Filling Materials/pharmacology , Silicates/pharmacology , Sodium Hypochlorite/pharmacology , Stem Cells/drug effects , Aluminum Compounds/chemistry , Calcium/metabolism , Calcium Compounds/chemistry , Cell Line , Drug Combinations , Humans , Osteoblasts/metabolism , Oxides/chemistry , Periodontal Ligament/metabolism , Silicates/chemistry , Sodium Hypochlorite/chemistry , Stem Cells/metabolism , Surface Properties/drug effects
4.
J Cell Physiol ; 236(9): 6742-6753, 2021 09.
Article in English | MEDLINE | ID: mdl-33604904

ABSTRACT

We aimed to generate periodontal ligament (PDL) tissue-like structures from a multipotent human PDL cell line using three-dimensional (3D) bioprinting technology and to incorporate these structures with bioactive core materials to develop a new biohybrid implant system. After 3D bioprinting, single-cell spheroids were able to form 3D tubular structures (3DTBs). We established three types of complexes using 3DTBs and different core materials: 3DTB-titanium core (TIC), 3DTB-hydroxyapatite core (HAC), and 3DTB without a core material (WOC). The expressions of PDL-, angiogenesis-, cementum-, and bone-related genes were significantly increased in the three complexes compared with monolayer-cultured cells. Abundant collagen fibers and cells positive for the above markers were confirmed in the three complexes. However, more positive cells were detected in HAC than in WOC or TIC. The present results suggest that 3D-bioprinted structures and hydroxyapatite core materials can function similarly to the PDL and may be useful for the development of a new biohybrid implant system.


Subject(s)
Biocompatible Materials/chemistry , Periodontal Ligament/physiology , Prostheses and Implants , Biomarkers/metabolism , Cell Line , Durapatite/chemistry , Gene Expression Regulation , Humans , Spheroids, Cellular/cytology , Staining and Labeling , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...