Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 132193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723816

ABSTRACT

Developing a sorbent for the removal of La3+ ions from wastewater offers significant environmental and economic advantages. This study employed an ion-imprinting process to integrate La3+ ions into a newly developed derivative of aminoguanidine-chitosan (AGCS), synthesized via an innovative method. The process initiated with the modification of chitosan by attaching cyanoacetyl groups through amide bonds, yielding cyanoacetyl chitosan (CAC). This derivative underwent further modification with aminoguanidine to produce the chelating AGCS biopolymer. The binding of La3+ ions to AGCS occurred through imprinting and cross-linking with epichlorohydrin (ECH), followed by the extraction of La3+, resulting in the La3+ ion-imprinted sorbent (La-AGCS). Structural confirmation of these chitosan derivatives was established through elemental analysis, FTIR, and NMR. SEM analysis revealed that La-AGCS exhibited a more porous structure compared to the smoother non-imprinted polymer (NIP). La-AGCS demonstrated superior La3+ capture capability, with a maximum capacity of 286 ± 1 mg/g. The adsorption process, fitting the Langmuir and pseudo-second-order models, indicated a primary chemisorption mechanism. Moreover, La-AGCS displayed excellent selectivity for La3+, exhibiting selectivity coefficients ranging from 4 to 13 against other metals. This study underscores a strategic approach in designing advanced materials tailored for La3+ removal, capitalizing on specific chelator properties and ion-imprinting technology.


Subject(s)
Chitosan , Guanidines , Lanthanum , Molecular Imprinting , Wastewater , Water Pollutants, Chemical , Chitosan/chemistry , Lanthanum/chemistry , Wastewater/chemistry , Adsorption , Guanidines/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Molecular Imprinting/methods , Water Purification/methods , Ions , Kinetics
2.
Int J Biol Macromol ; 266(Pt 2): 131339, 2024 May.
Article in English | MEDLINE | ID: mdl-38574925

ABSTRACT

The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and ß-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 µmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 µmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 µM, 185 µM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.


Subject(s)
Acid Phosphatase , Brain , Chickens , Zinc , Animals , Zinc/chemistry , Substrate Specificity , Acid Phosphatase/metabolism , Acid Phosphatase/chemistry , Acid Phosphatase/isolation & purification , Brain/enzymology , Kinetics , Hydrogen-Ion Concentration , Molecular Weight
3.
Chirality ; 35(10): 766-778, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37227057

ABSTRACT

In the current work, an enantioselective imprinting technique was used to develop a very selective adsorbent for the (+)-cathine ((+)-Cat) enantiomer. The phenolic sulfonamide produced from 2,4-dihydroxybenzenesulfonic acid (HBS) and (+)-Cat ((+)-Cat-HBS) was initially synthesized by triphenylphosphene activation and subsequently involved in condensation polymerization with resorcinol in the presence of formaldehyde under acidic conditions. Alkaline sulfonamide bond-breaking was subsequently employed to separate the (+)-Cat template from the polymer, and the resulting imprinted resin ((+)-CIP) displayed high selectivity for the (+)-Cat, with a capacity of 225 ± 2 mg/g. Studies of selectivity also showed that the (+)-Cat enantiomer was preferred over its counterpart because of the development of configurationally matching receptors. In addition, the produced resin was used for the enantioresolution of (±)-Cat racemate by column method, yielding a loading supernatant solution with an enantiomeric excess of (+)-Cat 50% and a recovery eluant solution with an excess of (-)-Cat 85%.

4.
Biomass Convers Biorefin ; : 1-10, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35646508

ABSTRACT

Using microwave technique in the presence of citric acid, selenium nanoparticles (SeNPs) were fabricated. The morphological characteristics revealed that the spherical SeNPs with diameters ranging from 10.5 to 20 nm aggregated spherical shapes with sizes ranging from 0.67 to 0.83 mm. Moreover, the antioxidant efficacy was assessed by the DPPH radical scavenging test, which depicted that green-prepared nanoparticle at a 106.3 mg/mL dosage had the maximum scavenging capacity (301.1 ± 11.42 mg/g). Otherwise, with nanoparticle concentrations of 500 mg/ml, in vitro cell viability of SeNPs through human breast cancer MCF-7 cell lines was reduced to 61.2 ± 2.2% after 1 day of exposure. The antibacterial activity was tested against G-negative Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), G-positive bacteria Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus), which demonstrated that SeNPs had little activity against S. aureus. Still, it had the highest activity against E. coli, with a zone of inhibition (ZOI) of 25.2 ± 1.5 mm compared to 16.0 ± 0.6 mm for the standard antibiotic. Most notably, biogenic SeNPs have anticoagulant activities using activated partial thromboplastin time (aPTT) assessment. Based on previous findings, SeNPs can be used in medical aid and their cell viability, antioxidant, anticoagulant, and effects on bacteria.

5.
Carbohydr Polym ; 284: 119139, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35287888

ABSTRACT

The main aim of this work is the preparation of azo dye modified chitosan that was subsequently used in the ion-imprinting of Cr(III) ions to finally obtain ion-selective sorbent able to selectively combine with Cr(III) ions from water when coexisting with other similar metal ions. The azo dye derived from resorcinol and p-aminobenzoic acid was prepared and then linked to the chitosan amino groups by amide linkages utilizing EDC/NHS coupling agent. A polymeric complex of the azo dye chitosan derivative AZCS and Cr(III) ions was then prepared and treated with glyoxal solution, which cross-link the main chitosan chains in form of micro-spherical beads in presence of the coordinated Cr(III) ions that were later expelled out of the texture of the beads using acidified EDTA eluent solution while preserving the spatial and geometrical shape of the resulting Cr(III) ions chelating sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...