Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(3): 103350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262339

ABSTRACT

The development of antibiotic-resistant microorganisms prompted the investigation of possible antibiotic substitutes. As a result, the purpose of the current study is to assess the effect of dietary Spirulina platensis extract as an antibiotic alternative on Japanese quail (Coturnix japonica) growth, antioxidant status, blood parameters, and cecal microorganisms. There was a total of 150 Japanese quails used in this study, divided equally among 5 experimental groups (10 birds per group with 3 replicates): group 1 (G1) received a basal diet without any S. platensis extract, group 2 (G2) received a basal diet supplemented with 1 mL S. platensis extract/kg, group 3 (G3) received a basal diet supplemented with 2 mL S. platensis extract/kg, group 4 (G4) received a basal diet supplemented with 3 mL S. platensis extract/kg, and group 5 (G5) received a basal diet supplemented with 4 mL S. platensis extract/kg from d 7 until d 35. The results showed that compared to the control birds in G1, Japanese quail supplemented with 4 mL of S. platensis extract/kg of diet (G5) had significantly better live body weight, body weight gain, feed intake, feed conversion ratio, digestive enzymes, blood parameters, liver and kidney functions, lipid profile, antioxidant profile, immunological parameters, and cecal microorganism's count. There were no significant changes in the percentage of carcasses, liver, and total giblets among all the 5 groups. Only gizzard percentage showed a significant increase in G2 compared to birds in G1. In addition, intestinal pH showed a significant drop in G2 and G5 compared to birds in G1. After cooking the quail meat, the juiciness and tenderness increased as S. platensis extract levels increased, whereas aroma and taste declined slightly as S. platensis extract levels increased. Furthermore, when a high concentration of S. platensis extract was used, the lightness of the meat reduced while its redness and yellowness increased. The disk diffusion assay showed that S. platensis extract had significant antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Campylobacter jejuni, and Salmonella typhi, with inhibition zones ranging from 16 to 42 mm. This activity may be attributable to the volatile chemicals in S. platensis extract, of which Geosmin and 2-methylisoborneol are the primary components. In the diet of Japanese quails, it is possible to draw the conclusion that the extract of S. platensis can be utilized as a feed additive and as an alternative to antibiotics.


Subject(s)
Antioxidants , Coturnix , Spirulina , Animals , Chickens , Diet/veterinary , Dietary Supplements , Body Weight , Anti-Bacterial Agents/pharmacology , Animal Feed , Quail
2.
Poult Sci ; 103(2): 103320, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215504

ABSTRACT

Salmonella is a significant foodborne pathogen that has a significant impact on public health, and different strains of multidrug resistance (MDR) have been identified in this genus. This study used a combination of phenotypic and genotypic approaches to identify distinct Salmonella species collected from poultry broiler and layer farms, and antibiotic sensitivity testing was performed on these species. A total of 56 Salmonella isolates were serotyped, and phenotypic antibiotic resistance was determined for each strain. The enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) method was also used to provide a genotypic description, from which a dendrogram was constructed and the most likely phylogenetic relationships were applied. Salmonella isolates were detected in 20 (17%) out of 117 samples collected from small-scale broiler flocks. Salmonella isolates were classified as MDR strains after showing tolerance to 4 antibiotics, but no resistance to cloxacillin, streptomycin, vancomycin, or netilmicin was observed. From a genotypic perspective, these strains lack dfrD, parC, and blasfo-1 resistant genes, while harboring blactx-M, blaDHA-L, qnrA, qnrB, qnrS, gyrA, ermA, ermB, ermC, ermTR, mefA, msrA, tet A, tet B, tet L, tet M resistance genes. The genotyping results obtained with ERIC-PCR allowed isolates to be classified based on the source of recovery. It was determined that Salmonella strains displayed MDR, and many genes associated with them. Additionally, the ERIC-PCR procedure aided in the generation of clusters with biological significance. Extensive research on Salmonella serotypes is warranted, along with the implementation of long-term surveillance programs to monitor MDR Salmonella serotypes in avian-derived foods.


Subject(s)
Chickens , Salmonella enteritidis , Animals , Chickens/microbiology , Salmonella enteritidis/genetics , Prevalence , Farms , Phylogeny , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation , Microbial Sensitivity Tests/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...