Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 195: 106708, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38262570

ABSTRACT

With the first reports on the possibility of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas)9 surfacing in 2005, the enthusiasm for protein silencing via nucleic acid delivery experienced a resurgence following a period of diminished enthusiasm due to challenges in delivering small interfering RNAs (siRNA), especially in vivo. However, delivering the components necessary for this approach into the nucleus is challenging, maybe even more than the cytoplasmic delivery of siRNA. We previously reported the birth of peptide/lipid-associated nucleic acids (PLANAs) for siRNA delivery. This project was designed to investigate the efficiency of these nanoparticles for in vitro delivery of CRISPR/Cas9 ribonucleoproteins. Our initial experiments indicated higher toxicity for PLANAs with the more efficient reverse transfection method. Therefore, polyethylene glycol (PEG) was added to the composition for PEGylation of the nanoparticles by partially replacing two of the lipid components with the PEG-conjugated counterparts. The results indicated a more significant reduction in the toxicity of the nanoparticle, less compromise in encapsulation efficiency and more PEGylation of the surface of the nanoparticles using DOPE-PEG2000 at 50 % replacement of the naïve lipid. The cell internalization and transfection efficiency showed a comparable efficiency for the PEGylated and non-PEGylated PLANAs and the commercially available Lipofectamine™ CRISPRMAX™. Next Generation Sequencing of the cloned cells showed a variety of indels in the transfected cell population. Overall, our results indicate the efficiency and safety of PEGylated PLANAs for in vitro transfection with CRISPR/Cas9 ribonucleoproteins. PEGylation has been studied extensively for in vivo delivery, and PEGylated PLANAs will be candidates for future in vivo studies.


Subject(s)
CRISPR-Cas Systems , Peptide Nucleic Acids , Ribonucleoproteins/genetics , RNA, Small Interfering , Polyethylene Glycols , Lipids , Peptides
2.
Pharmaceutics ; 15(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36839988

ABSTRACT

RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the ß-alanine (ßA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-ßA-ßA-W4-ßA-ßA-R4-CO-NH2 and Ac-K-ßA-ßA-W4-ßA-ßA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and PEG550. Alternatively, the side chain of lysine in the second sequence was used for conjugation with cholesterol or oleic acid. We hypothesized that amphiphilic peptides and optimum fatty acyl chain or PEG could function as an effective siRNA carrier by complementing each structural component's self-assembly and membrane internalization properties. None of the designed peptides showed cytotoxicity up to 10 µM. Serum stability studies suggested that the newly designed peptides efficiently protected siRNA against early degradation by nucleases. Flow cytometry analysis indicated 50-90% cellular uptake of siRNA using the newly developed modified linear peptides (MLPs). Western blot results revealed more than 90% protein downregulation after targeting STAT3 in MDA-MB-231 and SKOV-3 cell lines. In summary, a new peptide class was developed to safely and efficiently deliver siRNA.

3.
Eur J Pharm Sci ; 175: 106233, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35680032

ABSTRACT

Combinatorial silencing of more than one protein via small interfering RNA (siRNA) is a new strategy that can enhance the effect of RNA interference on cell function. To explore this strategy, we selected JAK/STAT axis as a major signaling pathway that contributes to several mechanisms involved in cancer cell proliferation and survival. We focused on four proteins involved in this pathway to explore the possibility of identifying a combinatorial targeting strategy (as the proof of concept) with enhanced efficiency: gp 130 (a co-receptor for IL6 cytokines), JAK2, STAT3, and importin α3 (the nuclear transporter reportedly involved in translocation of activated STAT3 to nucleus). Selected proteins were targeted by siRNA in two selected Triple Negative Breast Cancer cell lines (MDA-MB-231 and MDA-MB-468). The effect of individual and selected combinations of siRNAs on selected downstream antiapoptotic proteins, pro-apoptosis proteins, and cell-cycle regulating proteins was explored. Combinatorial silencing of JAK2/gp 130 enhanced the effect of RNA interference on downstream proteins significantly, and demonstrated enhanced effect in reducing cell viability, cell migration, and the level of activation of STAT3. In conclusion, the promising results of simultaneous targeting of JAK2 and gp 130 might be an example for potential combinatorial silencing strategies in cancer treatment.


Subject(s)
STAT3 Transcription Factor , Triple Negative Breast Neoplasms , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...