Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Bacteriol ; 204(11): e0017422, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36218351

ABSTRACT

Pseudomonas aeruginosa inhibits or eradicates Staphylococcus aureus in most in vitro settings. Nonetheless, P. aeruginosa and S. aureus are commonly isolated from chronically infected, nonhealing wounds and lungs of people with cystic fibrosis (CF). Therefore, we hypothesized that S. aureus could protect itself from P. aeruginosa through glucose-derived metabolites, such as small organic acids, preventing it from being eradicated. This in vitro study demonstrated that S. aureus populations, in the presence of glucose, secrete one or more substances that efficiently eradicate P. aeruginosa in a concentration-dependent manner. These substances had a molecular mass lower than three kDa, were hydrophilic, heat- and proteinase-resistant, and demonstrated a pH-dependent effect. Nuclear magnetic resonance analysis identified acetoin, acetic acid, and oligopeptides or cyclic peptides in glucose-grown S. aureus supernatants. All the tested wild-type and clinical S. aureus strain inhibited P. aeruginosa growth. Thus, we proposed a model in which a cocktail of these compounds, produced by established S. aureus populations in glucose presence, facilitated these two species' coexistence in chronic infections. IMPORTANCE Chronic infections affect a growing part of the population and are associated with high societal and personal costs. Multiple bacterial species are often present in these infections, and multispecies infections are considered more severe than single-species infections. Staphylococcus aureus and Pseudomonas aeruginosa often coexist in chronic infections. However, the interactions between these two species and their coexistence in chronic infections are not fully understood. By exploring in vitro interactions, we found a novel S. aureus-mediated inhibition of P. aeruginosa, and we suggested a model of the coexistence of the two species in chronic infections. With this study, we enhanced our understanding of the pathogenesis of chronic multispecies infections, which is crucial to paving the way for developing improved treatment strategies.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Staphylococcal Infections , Humans , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/metabolism , Staphylococcal Infections/microbiology , Cystic Fibrosis/microbiology , Glucose/metabolism , Pseudomonas Infections/microbiology , Biofilms
2.
Biomaterials ; 275: 120775, 2021 08.
Article in English | MEDLINE | ID: mdl-34243039

ABSTRACT

Biofilms that form on implanted medical devices cause recalcitrant infections. The early events enabling contaminating bacteria to evade immune clearance, before a mature biofilm is established, are poorly understood. Live imaging in vitro demonstrated that Staphylococcus aureus sparsely inoculated on an abiotic surface can go undiscovered by human neutrophils, grow, and form aggregates. Small (~50 µm2) aggregates of attached bacteria resisted killing by human neutrophils, resulting in neutrophil lysis and bacterial persistence. In vivo, neutrophil recruitment to a peritoneal implant was spatially heterogenous, with some bacterial aggregates remaining undiscovered by neutrophils after 24 h. Intravital imaging in mouse skin revealed that attached S. aureus aggregates grew and remained undiscovered by neutrophils for up to 3 h. These results suggest a model in which delayed recruitment of neutrophils to an abiotic implant presents a critical window in which bacteria establish a nascent biofilm and acquire tolerance to neutrophil killing.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Biofilms , Immune Evasion , Mice , Neutrophil Infiltration , Neutrophils
3.
Med Microbiol Immunol ; 209(6): 669-680, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32880037

ABSTRACT

The ability of bacteria to aggregate and form biofilms impairs phagocytosis by polymorphonuclear leukocytes (PMNs). The aim of this study was to examine if the size of aggregates is critical for successful phagocytosis and how bacterial biofilms evade phagocytosis. We investigated the live interaction between PMNs and Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Staphylococcus epidermidis using confocal scanning laser microscopy. Aggregate size significantly affected phagocytosis outcome and larger aggregates were less likely to be phagocytized. Aggregates of S. epidermidis were also less likely to be phagocytized than equally-sized aggregates of the other three species. We found that only aggregates of approx. 5 µm diameter or smaller were consistently phagocytosed. We demonstrate that planktonic and aggregated cells of all four species significantly reduced the viability of PMNs after 4 h of incubation. Our results indicate that larger bacterial aggregates are less likely to be phagocytosed by PMNs and we propose that, if the aggregates become too large, circulating PMNs may not be able to phagocytose them quickly enough, which may lead to chronic infection.


Subject(s)
Biofilms , Escherichia coli/physiology , Neutrophils/physiology , Phagocytosis , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/physiology , Staphylococcus epidermidis/physiology , Escherichia coli/ultrastructure , Humans , Pseudomonas aeruginosa/ultrastructure , Skin/microbiology , Staphylococcus aureus/ultrastructure , Staphylococcus epidermidis/ultrastructure
4.
Pathog Dis ; 78(2)2020 03 01.
Article in English | MEDLINE | ID: mdl-32196074

ABSTRACT

Extracellular DNA (eDNA) plays an important role in both the aggregation of bacteria and in the interaction of the resulting biofilms with polymorphonuclear leukocytes (PMNs) during an inflammatory response. Here, transmission electron and confocal scanning laser microscopy were used to examine the interaction between biofilms of Pseudomonas aeruginosa and PMNs in a murine implant model and in lung tissue from chronically infected cystic fibrosis patients. PNA FISH, DNA staining, labeling of PMN DNA with a thymidine analogue and immunohistochemistry were applied to localize bacteria, eDNA, PMN-derived eDNA, PMN-derived histone H3 (H3), neutrophil elastase (NE) and citrullinated H3 (citH3). Host-derived eDNA was observed surrounding bacterial biofilms but not within the biofilms. H3 localized to the lining of biofilms while NE was found throughout biofilms. CitH3, a marker for neutrophil extracellular traps (NETs) was detected only sporadically indicating that most host-derived eDNA in vivo was not a result of NETosis. Together these observations show that, in these in vivo biofilm infections with P. aeruginosa, the majority of eDNA is found external to the biofilm and derives from the host.


Subject(s)
Biofilms , DNA, Bacterial/metabolism , Extracellular Traps/metabolism , Animals , Histones/metabolism , Humans , Mice , Neutrophils/physiology , Neutrophils/ultrastructure , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology
5.
J Invest Dermatol ; 140(4): 806-815.e5, 2020 04.
Article in English | MEDLINE | ID: mdl-31518559

ABSTRACT

The skin is our interface with the outside world, and consequently it is exposed to a wide range of microbes and allergens. Recent studies have indicated that allergen-specific skin-resident memory T (TRM) cells play a role in allergic contact dermatitis (ACD). However, the composition and dynamics of the epidermal T-cell subsets during ACD are not known. Here we show that exposure of the skin to the experimental contact allergen DNFB results in a displacement of the normally occurring dendritic epidermal T cells (DETC) concomitant with an accumulation of epidermal CD8+CD69+CD103+ TRM cells in mice. By studying knockout mice, we provide evidence that CD8+ T cells are required for the displacement of the DETC and that DETC are not required for recruitment of CD8+ TRM cells to the epidermis following allergen exposure. We demonstrate that the magnitude of the allergic reaction correlates with the number of CD8+ epidermal TRM cells, which again correlates with allergen dose and number of allergen exposures. Finally, in an attempt to elucidate why CD8+ epidermal TRM cells persist in the epidermis, we show that CD8+ epidermal TRM cells have a higher proliferative capability and are bioenergetically more stable, displaying a higher spare respiratory capacity than DETC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dermatitis, Allergic Contact/immunology , Immunologic Memory , Animals , CD8-Positive T-Lymphocytes/pathology , Dendritic Cells/pathology , Dermatitis, Allergic Contact/pathology , Disease Models, Animal , Epidermis/pathology , Mice , Mice, Knockout
6.
Pathog Dis ; 77(5)2019 07 01.
Article in English | MEDLINE | ID: mdl-31529027

ABSTRACT

To study the interaction between aggregating bacteria and polymorphonuclear leukocytes (PMNs) in vitro, the chosen medium must favor both the isolated PMNs and the bacteria. To investigate the best-suited medium for the in vitro survival of isolated unactivated human PMNs, we compared three different mammalian cell media: Krebs-Ringer balanced salt solution (BSS), Hanks' BSS (HBSS) and Roswell Park Memorial Institute (RPMI) 1640. The death of PMNs was estimated by the release of lactate dehydrogenase activity. Furthermore, two types of serum, human (HS) and fetal bovine (FBS), were compared at different concentrations (0%, 2%, 5%, 10%) and at three different time points (2, 4, 20 h). We show that Krebs-Ringer BSS prolonged the survival of PMNs compared to HBSS and RPMI 1640 and that the addition of 10% FBS significantly enhanced the long-term survival (20 h) compared to HS. Furthermore, we observed aggregation of Pseudomonas aeruginosa when grown in the presence of either a mixture of histones, histone H3, arginine or lysine. In this study, we show that the use of Krebs-Ringer BSS is highly relevant for the study of the interaction of bacteria and PMNs in relation to novel treatment strategies of biofilm infections due to the reproduction of bacterial aggregation as seen in chronic bacterial infections.


Subject(s)
Biofilms/growth & development , Host-Pathogen Interactions , Neutrophils/immunology , Neutrophils/microbiology , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/immunology , Solutions/chemistry , Cells, Cultured , Cytological Techniques , Humans , Microbiological Techniques
7.
Biofilm ; 1: 100006, 2019 Dec.
Article in English | MEDLINE | ID: mdl-33447793

ABSTRACT

The microtiter assay is one of the most widely used methods for assessing biofilm formation. Though it has high throughput, this assay is known for its substantial deviation from experiment to experiment, and even from well to well. Since the assay constitutes one of the pillars of biofilm research, it was decided to examine the wells of a microtiter plate directly during growth, treatment, and the steps involved in crystal violet (CV) measurements. An inverted Zeiss LSM 880 confocal laser scanning microscope was used to visualize and quantify biomass directly in the wells of the microtiter plate. Green fluorescent protein-tagged Pseudomonas aeruginosa, PAO1, and live/dead stains were used to assess the structure, state, and position of biomass build-up. Microscopic observations were compared with colony-forming unit (CFU) and CV measurements. The development and the structured architecture of biomass was observed in real-time in the wells. Three-dimensional images of biomass were obtained from all of the microtiter wells; these showed variations from well to well. CV staining showed large variations in remaining biomass, depending on the method selected to remove the supernatant prior to CV staining (i.e. pipetting or manually discarding the fluid by inversion, washed or unwashed wells). Colony-forming unit counts or live/dead staining used to evaluate biomass with or without antibiotic treatment proved imprecise due to aggregation, limited removal of biomass, and overestimation of dead staining. The highly structured microenvironment of biomass in microtiter wells needs to be considered when designing and analyzing experiments. When using microtiter plates, stochastic variation due to growth and handling may lead to flawed conclusions. It is therefore recommended that this assay be used as a screening tool rather than as a stand-alone experimental tool.

8.
APMIS ; 126(10): 779-794, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30191615

ABSTRACT

The use of fluorescent stains to visually investigate eukaryotic and/or prokaryotic cells is increasing quickly and manuscripts within all areas of research publish results using fluorescent staining techniques. However, in contrast to literature on traditional histological staining techniques, the literature on fluorescent stains and staining techniques does not offer as good an illustration of cellular morphology. The aim of this guideline is to illustrate different fluorescent stains and staining techniques for imaging immune cells, in particular the polymorphonuclear leukocytes (PMNs), in combination with infecting bacteria as seen in chronic bacterial infections. Thereby providing the first guideline for the morphology and identification of fluorescently stained PMNs, bacteria and biofilm.


Subject(s)
Bacteria/ultrastructure , Fluorescent Dyes/chemistry , Neutrophils/microbiology , Neutrophils/ultrastructure , Staining and Labeling/methods , Animals , Bacterial Infections/microbiology , Biofilms , Humans , Mice , Microscopy, Confocal/methods
9.
Appl Environ Microbiol ; 84(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29269495

ABSTRACT

For the past 150 years, bacteria have been investigated primarily in liquid batch cultures. Contrary to most expectations, these cultures are not homogeneous mixtures of single-cell bacteria, because free-floating bacterial aggregates eventually develop in most liquid batch cultures. These aggregates share characteristics with biofilms, such as increased antibiotic tolerance. We investigated how aggregates develop and what influences this development in liquid batch cultures of Pseudomonas aeruginosa We focused on how the method of inoculation affected aggregation by assessing aggregate frequency and size using confocal laser scanning microscopy. Several traditional methods of initiating an overnight bacterial culture, i.e., inoculation directly from frozen cultures, inoculation using agar-grown cells, or inoculation using cells grown in liquid cultures, were investigated. We discovered a direct link between the inoculation method and the size and frequency of biofilm aggregates in liquid batch cultures, with inoculation directly from a plate resulting in the most numerous and largest aggregates. These large aggregates had an overall impact on the cultures' subsequent tolerance toward tobramycin, indicating that the inoculation method has a profound impact on antibiotic tolerance. We also observed a mechanism whereby preformed aggregates recruited single cells from the surrounding culture in a "snowball effect," building up aggregated biomass in the culture. This recruitment was found to rely heavily on the exopolysaccharide Psl. Additionally, we found that both Escherichia coli and Staphylococcus aureus produced aggregates in liquid batch cultures. Our results stress the importance of inoculation consistency throughout experiments and the substantial impact aggregate development in liquid batch cultures may have on the outcomes of microbiological experiments.IMPORTANCE Pure liquid cultures are fundamental to the field of microbiological research. These cultures are normally thought of as homogeneous mixtures of single-cell bacteria; the present study shows that this is not always true. Bacteria may aggregate in these liquid cultures. The aggregation can be induced by the method chosen for inoculation. The presence of aggregates can significantly change the outcomes of experiments by altering the phenotype of the cultures. The study found a mechanism whereby preformed aggregates are able to recruit surrounding single cells in a form of snowball effect, creating more and larger aggregates in the cultures. Once formed, these aggregates are hard to remove. Aggregates in liquid cultures may be an immense unseen challenge for microbiologists.


Subject(s)
Batch Cell Culture Techniques/methods , Biofilms , Drug Resistance, Bacterial , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Escherichia coli/physiology , Microscopy, Confocal , Staphylococcus aureus/physiology
10.
Methods Mol Biol ; 1673: 203-212, 2018.
Article in English | MEDLINE | ID: mdl-29130175

ABSTRACT

In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged intratracheally with alginate beads containing both a Pseudomonas aeruginosa strain together with the E. coli monitor strain can be investigated at different time points postinfection. Epifluorescent or confocal scanning laser microscopy (CSLM) is used to detect the GFP-expressing E. coli monitor strain in the lung tissues, indicating production and excretion of AHLs in vivo by the infecting P. aeruginosa.


Subject(s)
4-Butyrolactone/analogs & derivatives , Imaging, Three-Dimensional/methods , Quorum Sensing , 4-Butyrolactone/metabolism , Alginates/chemistry , Animals , Female , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Mice, Inbred BALB C , Microspheres , Microtomy , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/metabolism
11.
Methods Mol Biol ; 1673: 275-285, 2018.
Article in English | MEDLINE | ID: mdl-29130180

ABSTRACT

The formation of biofilms in conjunction with quorum sensing (QS) regulated expression of virulence by opportunistic pathogens contributes significantly to immune evasion and tolerance to a variety of antimicrobial treatments. The present protocol describes methods to determine the in vitro efficacy of potential QS inhibitors (QSIs). Work on Pseudomonas aeruginosa has shown that chemical blockage of QS is a promising new antimicrobial strategy. Several live bacterial reporter systems have been developed to screen extracts and pure compounds for QSI activity. Here we describe the usage of reporter strains consisting of a lasB-gfp or rhlA-gfp fusion in P. aeruginosa for qualitative and quantitative evaluation of the inhibition of two of the major QS pathways, monitored as reduced expression of green fluorescence. By the use of an in vitro flow cell system it is possible to study the QSI activity by monitoring its ability to interfere with the protective functions of bacterial biofilm. For evaluation of the global effects of QSI compounds, we present a protocol for the DNA microarray based transcriptomics. Using these in vitro methods it is possible to evaluate the potential of various QSI compounds.


Subject(s)
Biological Assay/methods , Quorum Sensing , Biofilms/growth & development , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Oligonucleotide Array Sequence Analysis , Pseudomonas aeruginosa/physiology , Rheology
12.
Int J Mol Sci ; 18(12)2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29231866

ABSTRACT

The main driver behind biofilm research is the desire to understand the mechanisms governing the antibiotic tolerance of biofilm-growing bacteria found in chronic bacterial infections. Rather than genetic traits, several physical and chemical traits of the biofilm have been shown to be attributable to antibiotic tolerance. During infection, bacteria in biofilms exhibit slow growth and a low metabolic state due to O2 limitation imposed by intense O2 consumption of polymorphonuclear leukocytes or metabolically active bacteria in the biofilm periphery. Due to variable O2 availability throughout the infection, pathogen growth can involve aerobic, microaerobic and anaerobic metabolism. This has serious implications for the antibiotic treatment of infections (e.g., in chronic wounds or in the chronic lung infection of cystic fibrosis patients), as antibiotics are usually optimized for aerobic, fast-growing bacteria. This review summarizes knowledge about the links between the microenvironment of biofilms in chronic infections and their tolerance against antibiotics.


Subject(s)
Biofilms/growth & development , Lung/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cystic Fibrosis/microbiology , Humans , Lung/drug effects , Lung/pathology , Models, Biological , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects
13.
Appl Environ Microbiol ; 83(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28258141

ABSTRACT

Alginate beads represent a simple and highly reproducible in vitro model system for diffusion-limited bacterial growth. In this study, alginate beads were inoculated with Pseudomonas aeruginosa and followed for up to 72 h. Confocal microscopy revealed that P. aeruginosa formed dense clusters similar in size to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Bacterial aggregates primarily grew in the bead periphery and decreased in size and abundance toward the center of the bead. Microsensor measurements showed that the O2 concentration decreased rapidly and reached anoxia ∼100 µm below the alginate bead surface. This gradient was relieved in beads supplemented with NO3- as an alternative electron acceptor allowing for deeper growth into the beads. A comparison of gene expression profiles between planktonic and alginate-encapsulated P. aeruginosa confirmed that the bacteria experienced hypoxic and anoxic growth conditions. Furthermore, alginate-encapsulated P. aeruginosa exhibited a lower respiration rate than the planktonic counterpart and showed a high tolerance toward antibiotics. The inoculation and growth of P. aeruginosa in alginate beads represent a simple and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3- as an alternative electron acceptor, and by reduced respiration rates, as well as an enhanced tolerance to antibiotic treatment.IMPORTANCEPseudomonas aeruginosa has been studied intensively for decades due to its involvement in chronic infections, such as cystic fibrosis and chronic wounds, where it forms biofilms. Much research has been dedicated to biofilm formation on surfaces; however, in chronic infections, most biofilms form small aggregates of cells not attached to a surface, but embedded in host material. In this study, bacteria were encapsulated in small alginate beads and formed aggregates similar to what is observed in chronic bacterial infections. Our findings show that aggregates are exposed to steep oxygen gradients, with zones of oxygen depletion, and that nitrate may serve as an alternative to oxygen, enabling growth in oxygen-depleted zones. This is important, as slow growth under low-oxygen conditions may render the bacteria tolerant toward antibiotics. This model provides an alternative to surface biofilm models and adds to the comprehension that biofilms do not depend on a surface for formation.


Subject(s)
Alginates , Bacterial Adhesion , Biocompatible Materials , Microspheres , Pseudomonas aeruginosa/physiology , Aerobiosis , Electron Transport , Glucuronic Acid , Hexuronic Acids , Nitrates/metabolism , Oxidation-Reduction , Oxygen/analysis , Pseudomonas aeruginosa/growth & development
14.
Pathog Dis ; 70(3): 339-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24482426

ABSTRACT

Injection of soft tissue fillers plays an important role in facial reconstruction and esthetic treatments such as cosmetic surgery for lip augmentation and wrinkle smoothening. Adverse events are an increasing problem, and recently, it has been suggested that bacteria are the cause of a vast fraction these. We developed a novel mouse model and evaluated hyaluronic acid gel, calcium hydroxyl apatite microspheres, and polyacrylamide hydrogel for their potential for sustaining bacterial infections and their possible treatments. We were able to culture Pseudomonas aeruginosa, Staphylococcus epidermidis, and Probionibacterium acnes in all three gels. When contaminated gels were left for 7 days in a mouse model, we found sustainment of bacterial infection with the permanent gel, less with the semi-permanent gel, and no growth within the temporary gel. Evaluation of treatment strategies showed that once the bacteria had settled (into biofilms) within the gels, even successive treatments with high concentrations of relevant antibiotics were not effective. Our data substantiate bacteria as a cause of adverse reactions reported when using tissue fillers, and the sustainability of these infections appears to depend on longevity of the gel. Most importantly, the infections are resistant to antibiotics once established but can be prevented using prophylactic antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Physiological Phenomena , Biocompatible Materials/adverse effects , Biofilms/drug effects , Biofilms/growth & development , Animals , Anti-Bacterial Agents/administration & dosage , Female , Hydrogels , Mice , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology
15.
Adv Appl Microbiol ; 86: 1-40, 2014.
Article in English | MEDLINE | ID: mdl-24377853

ABSTRACT

The opportunistic gram-negative bacterium Pseudomonas aeruginosa is implicated in many chronic infections and is readily isolated from chronic wounds, medical devices, and the lungs of cystic fibrosis patients. P. aeruginosa is believed to persist in the host organism due to its capacity to form biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes (PMNs). In this chapter, the interplay between P. aeruginosa and the PMNs in chronic infections is discussed with focus on the role of rhamnolipids and extracellular DNA.


Subject(s)
Biofilms , Immune Evasion , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Glycolipids/immunology , Humans , Neutrophils/immunology , Neutrophils/microbiology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/immunology , Quorum Sensing
16.
Trends Microbiol ; 21(9): 466-74, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827084

ABSTRACT

Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms, and we suggest new strategies for improving this discrepancy.


Subject(s)
Bacterial Infections/microbiology , Bacterial Physiological Phenomena , Biofilms , Animals , Bacteria/genetics , Bacterial Infections/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...