Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
iScience ; 25(4): 103997, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35310940

ABSTRACT

This work maps the thermodynamics of electrochemically generated C-nucleophiles for reactive capture of CO2. We identify a linear relationship between the pKa, the reduction potential of a protonated nucleophile (E red ), and the nucleophile's free energy of CO2 binding ( Δ G b i n d ). Through synergistic experiments and computations, this study establishes a three-parameter correlation described by the equation Δ G b i n d = - 0.78 p K a + 4.28 E r e d + 20.95 for a series of twelve imidazol(in)ium/N-heterocyclic carbene pairs with an R 2 of 0.92. The correlation allows us to predict the Δ G b i n d of C-nucleophiles to CO2 using reduction potentials or pKas of imidazol(in)ium cations. The carbenes in this study were found to exhibit a wide range CO2 binding strengths, from strongly CO2 binding to nonspontaneous. This observation suggests that the Δ G b i n d of imidazol(in)ium-based carbenes is tunable to a desired strength by appropriate structural changes. This work sets the stage for systematic energetic tuning of electrochemically enabled reactive separations.

2.
J Am Chem Soc ; 143(50): 21275-21285, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34882386

ABSTRACT

Development of efficient electrocatalysts for the CO2 reduction reaction (CO2RR) to multicarbon products has been constrained by high overpotentials and poor selectivity. Here, we introduce iron phosphide (Fe2P) as an earth-abundant catalyst for the CO2RR to mainly C2-C4 products with a total CO2RR Faradaic efficiency of 53% at 0 V vs RHE. Carbon product selectivity is tuned in favor of ethylene glycol formation with increasing negative bias at the expense of C3-C4 products. Both Grand Canonical-DFT (GC-DFT) calculations and experiments reveal that *formate, not *CO, is the initial intermediate formed from surface phosphino-hydrides and that the latter form ionic hydrides at both surface phosphorus atoms (H@Ps) and P-reconstructed Fe3 hollow sites (H@P*). Binding of these surface hydrides weakens with negative bias (reactivity increases), which accounts for both the shift to C2 products over higher C-C coupling products and the increase in the H2 evolution reaction (HER) rate. GC-DFT predicts that phosphino-hydrides convert *formate to *formaldehyde, the key intermediate for C-C coupling, whereas hydrogen atoms on Fe generate tightly bound *CO via sequential PCET reactions to H2O. GC-DFT predicts the peak in CO2RR current density near -0.1 V is due to a local maximum in the binding affinity of *formate and *formaldehyde at this bias, which together with the more labile C2 product affinity, accounts for the shift to ethylene glycol and away from C3-C4 products. Consistent with these predictions, addition of exogenous CO is shown to block all carbon product formation and lower the HER rate. These results demonstrate that the formation of ionic hydrides and their binding affinity, as modulated by the applied potential, controls the carbon product distribution. This knowledge provides new insight into the influence of hydride speciation and applied bias on the chemical reaction mechanism of CO2RR that is relevant to all transition metal phosphides.

3.
Phys Chem Chem Phys ; 23(33): 17794-17802, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34382635

ABSTRACT

Diazaphospholenes have emerged as a promising class of metal-free hydride donors and have been implemented as molecular catalysts in several reduction reactions. Recent studies have also verified their radical reactivity as hydrogen atom donors. Experimental quantification of the hydricities and electrochemical properties of this unique class of hydrides has been limited by their sensitivity towards oxidation in open air and moist environments. Here, we implement quantum chemical density functional theory calculations to analyze the electrochemical catalytic cycle of diazaphospholenes in acetonitrile. We report computed hydricities, reduction potentials, pKa values, and bond dissociation free energies (BDFEs) for 64 P-based hydridic catalysts generated by functionalizing 8 main structures with 8 different electron donating/withdrawing groups. Our results demonstrate that a wide range of hydricities (29-66 kcal mol-1) and BDFEs (58-81 kcal mol-1) are attainable by functionalizing diazaphospholenes. Compared to the more common carbon-based hydrides, diazaphospholenes are predicted to require less negative reduction potentials to electrochemically regenerate hydrides with an equivalent hydridic strength, indicating their higher energy efficiency in the tradeoff between thermodynamic ability and reduction potential. We show that the tradeoff between the reducing ability and the energetic cost of regeneration can be optimized by varying the BDFE and the reorganization energy associated with hydride transfer (λHT), where lower BDFE and λHT correspond to more efficient catalysts. Aromatic phosphorus hydrides with predicted BDFEs of ∼62 kcal mol-1 and λHT's of ∼20 kcal mol-1 are found to require less negative reduction potentials than dihydropyridines and benzimidazoles with predicted BDFEs of ∼68 and ∼84 kcal mol-1 and λHT's of ∼40 and ∼50 kcal mol-1, respectively.

4.
J Phys Chem Lett ; 12(9): 2306-2311, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33651629

ABSTRACT

Selective reduction of CO2 to formate represents an ongoing challenge in photoelectrocatalysis. To provide mechanistic insights, we investigate the kinetics of hydride transfer (HT) from a series of metal-free hydride donors to CO2. The observed dependence of experimental and calculated HT barriers on the thermodynamic driving force was modeled by using the Marcus hydride transfer formalism to obtain the insights into the effect of reorganization energies on the reaction kinetics. Our results indicate that even if the most ideal hydride donor were discovered, the HT to CO2 would exhibit sluggish kinetics (<100 turnovers per second at -0.1 eV driving force), indicating that the conventional HT may not be an appropriate mechanism for solar conversion of CO2 to formate. We propose that the conventional HT mechanism should not be considered for CO2 reduction catalysis and argue that the orthogonal HT mechanism, previously proposed to address thermodynamic limitations of this reaction, may also lead to lower kinetic barriers for CO2 reduction to formate.

5.
Dalton Trans ; 49(7): 2053-2057, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31971534

ABSTRACT

This work examines the relative reactivities of ReI and MnI tricarbonyl pyridine-2,6-bis-N-heterocyclic carbene pincers M(CO)3CNCBnX (M = Re, Mn and X = Cl and Br) towards catalysis for the electrochemical conversion of CO2 to CO. Unlike prior well-studied group VII catalysts, Mn(CO)3CNCBnX is extraordinarily active, while the new Re(CO)3CNCBnX complex surprisingly does not exhibit catalytic response. DFT calculations shed light on this puzzling behavior and show that the redox-active pyridine-2,6-bis-N-heterocyclic carbene ligand facilitates the reduction of the ground-state complexes; however, the extent of electronic delocalization in the reduced intermediates differs in the degree of metalloradical character. The highly-active Mn(CO)3CNCBnX complex proceeds through an intermediate with nucleophilic metalloradical character in which 66% of the unpaired electron spin resides on Mn. In contrast, Re(CO)3CNCBnX reduction proceeds through an intermediate with less metalloradical character in which only 38% of the unpaired spin is localized on Re with the remainder delocalized over the ligand. The energetic penalty of the electron delocalization of an electron on the ligand affects the M-CO bond strengths and related kinetic barriers. We discuss these observations in the context of turnover-enabling effects in CO2 reductions mediated by group VII NHC pincer molecular electrocatalysts.

6.
Chem Commun (Camb) ; 55(39): 5583-5586, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31020295

ABSTRACT

Electrochemical regeneration of organic hydrides is often hindered by the rapid dimerization of organic radicals produced as the first intermediates of these electrochemical transformations. In this work, we utilize proton-coupled electron transfer to outcompete the undesired dimerization and achieve successful hydride regenerations of two groups of organic hydrides - acridines and benzimidazoles. This work provides an analysis of the critical factors that control the regeneration pathways of organic hydrides.

7.
J Am Chem Soc ; 141(1): 272-280, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30477302

ABSTRACT

We report a novel metal-free chemical reduction of CO2 by a recyclable benzimidazole-based organo-hydride, whose choice was guided by quantum chemical calculations. Notably, benzimidazole-based hydride donors rival the hydride-donating abilities of noble-metal-based hydrides such as [Ru(tpy)(bpy)H]+ and [Pt(depe)2H]+. Chemical CO2 reduction to the formate anion (HCOO-) was carried out in the absence of biological enzymes, a sacrificial Lewis acid, or a base to activate the substrate or reductant. 13CO2 experiments confirmed the formation of H13COO- by CO2 reduction with the formate product characterized by 1H NMR and 13C NMR spectroscopy and ESI-MS. The highest formate yield of 66% was obtained in the presence of potassium tetrafluoroborate under mild conditions. The likely role of exogenous salt additives in this reaction is to stabilize and shift the equilibrium toward the ionic products. After CO2 reduction, the benzimidazole-based hydride donor was quantitatively oxidized to its aromatic benzimidazolium cation, establishing its recyclability. In addition, we electrochemically reduced the benzimidazolium cation to its organo-hydride form in quantitative yield, demonstrating its potential for electrocatalytic CO2 reduction. These results serve as a proof of concept for the electrocatalytic reduction of CO2 by sustainable, recyclable, and metal-free organo-hydrides.


Subject(s)
Benzimidazoles/chemistry , Carbon Dioxide/chemistry , Formates/chemistry , Dihydropyridines/chemistry , Electrochemistry , Models, Molecular , Molecular Conformation , Salts/chemistry , Solvents/chemistry
8.
J Phys Chem B ; 122(44): 10179-10189, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30290115

ABSTRACT

Increasing atmospheric CO2 concentration and dwindling fossil fuel supply necessitate the search for efficient methods for CO2 conversion to fuels. Assorted studies have shown pyridine and its derivatives capable of (photo)electrochemically reducing CO2 to methanol, and some mechanistic interpretations have been proposed. Here, we analyze the thermodynamic and kinetic aspects of the efficacy of pyridines as hydride-donating catalytic reagents that transfer hydrides via their dihydropyridinic form. We investigate both the effects of functionalizing pyridinic derivatives with electron-donating and electron-withdrawing groups on hydride-transfer catalyst strength, assessed via their hydricity (thermodynamic ability) and nucleophilicity (kinetic ability), and catalyst recyclability, assessed via their reduction potential. We find that pyridines substituted with electron-donating groups have stronger hydride-donating ability (having lower hydricity and larger nucleophilicity values), but are less efficiently recycled (having more negative reduction potentials). In contrast, pyridines substituted with electron-withdrawing groups are more efficiently recycled, but are weaker hydride donors. Functional group modification favorably tunes hydride strength or efficiency, but not both. We attribute this problematic coupling between the strength and recyclability of pyridinic hydrides to their aromatic nature and suggest several avenues for overcoming this difficulty.

9.
Chem Soc Rev ; 47(8): 2809-2836, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29543931

ABSTRACT

Metal-free hydrides are of increasing research interest due to their roles in recent scientific advances in catalysis, such as hydrogen activation with frustrated Lewis pairs and electrocatalytic CO2 reduction with pyridinium and other aromatic cations. The structural design of hydrides for specific applications necessitates the correct description of their thermodynamic and kinetic prowess using reliable parameters - thermodynamic hydricity (ΔGH-) and nucleophilicity (N). This review summarizes reported experimental and calculated hydricity values for more than 200 metal-free hydride donors, including carbon-, boron-, nitrogen- and silicon-based hydrides. We describe different experimental and computational methods used to obtain these thermodynamic and kinetic parameters. Furthermore, tabulated data on metal-free hydrides are discussed in terms of structure-property relationships, relevance to catalysis and contemporary limitations for replacing transition-metal hydride catalysts. Finally, several selected applications of metal-free hydrides in catalysis are described, including photosynthetic CO2 reduction and hydrogen activation with frustrated Lewis pairs.

10.
J Phys Chem B ; 122(3): 1278-1288, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29251933

ABSTRACT

We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG⧧ for hydride transfers from hydride donors to CO2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG⧧; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

SELECTION OF CITATIONS
SEARCH DETAIL
...