Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(5): 1649-1664, 2023 03.
Article in English | MEDLINE | ID: mdl-34989316

ABSTRACT

We have synthesized benzo[d]oxazole derivatives (1-21) through a multistep reaction. Alteration in the structure of derivatives was brought in the last step via using various substituted aromatic aldehydes. In search of an anti-Alzheimer agent, all derivatives were evaluated against acetylcholinesterase and butyrylcholinesterase enzyme under positive control of standard drug donepezil (IC50 = 0.016 ± 0.12 and 4.5 ± 0.11 µM) respectively. In case of acetylcholinesterase enzyme inhibition, derivatives 8, 9 and 18 (IC50 = 0.50 ± 0.01, 0.90 ± 0.05 and 0.3 ± 0.05 µM) showed very promising inhibitory potentials. While in case of butyrylcholinesterase enzyme inhibition, most of the derivatives like 6, 8, 9, 13, 15, 18 and 19 (IC50 = 2.70 ± 0.10, 2.60 ± 0.10, 2.20 ± 0.10, 4.25 ± 0.10, 3.30 ± 0.10, 0.96 ± 0.05 and 3.20 ± 0.10 µM) displayed better inhibitory potential than donepezil. Moreover, derivative 18 is the most potent one among the series in both inhibitions. The binding interaction of derivatives with the active gorge of the enzyme was confirmed via a docking study. Furthermore, the binding interaction between derivatives and the active site of enzymes was correlated through the SAR study. Structures of all derivatives were confirmed through spectroscopic techniques such as 1H-NMR, 13C-NMR and HREI-MS, respectively.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Butyrylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship , Donepezil/pharmacology , Schiff Bases/chemistry , Molecular Docking Simulation , Molecular Structure
2.
Neurosciences (Riyadh) ; 25(2): 134-143, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32351251

ABSTRACT

OBJECTIVE: To review the dynamics of neuroscience research in the Kingdom of Saudi Arabia (KSA) from 2013-2018. METHODS: Subject category of Neuroscience was selected in the SciVal feature of Scopus database, which includes all relevant categories of the field limiting it to Saudi Arabia. RESULTS: Saudi Arabia is ranked 39th in publishing neuroscientific research worldwide. The number of yearly published articles has increased from 123 to 332 during the time period between 2013 and 2018. King Saud University & King Abdul Aziz University & their corresponding regions namely Western and Central regions are the major contributors to publications. Neuroscientists working in Saudi Arabia have collaboration with scientists from all over the world. The top 10 preferred journals are all international. In subcategories of neuroscience, developmental neuroscience seems the one that needs attention. CONCLUSION: Neuroscience research is on the rise in KSA. Older and well-established institutions like King Saud University & King Abdul Aziz University have taken lead in publishing neuroscientific research. International collaboration in all subfields of neuroscience is substantial. Eastern Southern and Northern regions and developmental neuroscience require more focus and funding.


Subject(s)
Bibliometrics , Biomedical Research , Neurosciences , Publications/statistics & numerical data , Humans , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...