Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37046438

ABSTRACT

Ionizing radiation is necessary for diagnostic imaging and deciding the right radiation dose is extremely critical to obtain a decent quality image. However, increasing the dosage to improve the image quality has risks due to the potential harm from ionizing radiation. Thus, finding the optimal as low as diagnostically acceptable (ALADA) dosage is an open research problem that has yet to be tackled using artificial intelligence (AI) methods. This paper proposes a new multi-balancing 3D convolutional neural network methodology to build 3D multidetector computed tomography (MDCT) datasets and develop a 3D classifier model that can work properly with 3D CT scan images and balance itself over the heavy unbalanced multi-classes. The proposed models were exhaustively investigated through eighteen empirical experiments and three re-runs for clinical expert examination. As a result, it was possible to confirm that the proposed models improved the performance by an accuracy of 5% to 10% when compared to the baseline method. Furthermore, the resulting models were found to be consistent, and thus possibly applicable to different MDCT examinations and reconstruction techniques. The outcome of this paper can help radiologists to predict the suitability of CT dosages across different CT hardware devices and reconstruction algorithms. Moreover, the developed model is suitable for clinical application where the right dose needs to be predicted from numerous MDCT examinations using a certain MDCT device and reconstruction technique.

2.
Hum Genomics ; 12(1): 25, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743099

ABSTRACT

The analysis of population structure has many applications in medical and population genetic research. Such analysis is used to provide clear insight into the underlying genetic population substructure and is a crucial prerequisite for any analysis of genetic data. The analysis involves grouping individuals into subpopulations based on shared genetic variations. The most widely used markers to study the variation of DNA sequences between populations are single nucleotide polymorphisms. Data preprocessing is a necessary step to assess the quality of the data and to determine which markers or individuals can reasonably be included in the analysis. After preprocessing, several methods can be utilized to uncover population substructure, which can be categorized into two broad approaches: parametric and nonparametric. Parametric approaches use statistical models to infer population structure and assign individuals into subpopulations. However, these approaches suffer from many drawbacks that make them impractical for large datasets. In contrast, nonparametric approaches do not suffer from these drawbacks, making them more viable than parametric approaches for analyzing large datasets. Consequently, nonparametric approaches are increasingly used to reveal population substructure. Thus, this paper reviews and discusses the nonparametric approaches that are available for population structure analysis along with some implications to resolve challenges.


Subject(s)
Genetics, Population , Polymorphism, Single Nucleotide/genetics , Algorithms , Genotype , Humans , Principal Component Analysis , Sequence Analysis, DNA
3.
BioData Min ; 10: 37, 2017.
Article in English | MEDLINE | ID: mdl-29270227

ABSTRACT

BACKGROUND: Clustering plays a crucial role in several application domains, such as bioinformatics. In bioinformatics, clustering has been extensively used as an approach for detecting interesting patterns in genetic data. One application is population structure analysis, which aims to group individuals into subpopulations based on shared genetic variations, such as single nucleotide polymorphisms. Advances in DNA sequencing technology have facilitated the obtainment of genetic datasets with exceptional sizes. Genetic data usually contain hundreds of thousands of genetic markers genotyped for thousands of individuals, making an efficient means for handling such data desirable. RESULTS: Random Forests (RFs) has emerged as an efficient algorithm capable of handling high-dimensional data. RFs provides a proximity measure that can capture different levels of co-occurring relationships between variables. RFs has been widely considered a supervised learning method, although it can be converted into an unsupervised learning method. Therefore, RF-derived proximity measure combined with a clustering technique may be well suited for determining the underlying structure of unlabeled data. This paper proposes, RFcluE, a cluster ensemble approach for determining the underlying structure of genetic data based on RFs. The approach comprises a cluster ensemble framework to combine multiple runs of RF clustering. Experiments were conducted on high-dimensional, real genetic dataset to evaluate the proposed approach. The experiments included an examination of the impact of parameter changes, comparing RFcluE performance against other clustering methods, and an assessment of the relationship between the diversity and quality of the ensemble and its effect on RFcluE performance. CONCLUSIONS: This paper proposes, RFcluE, a cluster ensemble approach based on RF clustering to address the problem of population structure analysis and demonstrate the effectiveness of the approach. The paper also illustrates that applying a cluster ensemble approach, combining multiple RF clusterings, produces more robust and higher-quality results as a consequence of feeding the ensemble with diverse views of high-dimensional genetic data obtained through bagging and random subspace, the two key features of the RF algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...