Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 240(10): 2595-2605, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029312

ABSTRACT

Alterations in brain reactions to alcohol-related cues are a neurobiological characteristic of alcohol dependence (AD) and a prospective target for achieving substantial treatment effects. However, a robust prediction of the differences in inpatients' brain responses to alcohol cues during the treatment process is still required. This study offers a data-driven approach for classifying AD inpatients undertaking alcohol treatment protocols based on their brain responses to alcohol imagery with and without drinking actions. The brain activity of thirty inpatients with AD undergoing treatment was scanned using functional magnetic resonance imaging (fMRI) while seeing alcohol and matched non-alcohol images. The mean values of brain regions of interest (ROI) for alcohol-related brain responses were obtained using general linear modeling (GLM) and subjected to hierarchical clustering analysis. The proposed classification technique identified two distinct subgroups of inpatients. For the two types of cues, subgroup one exhibited significant activation in a wide range of brain regions, while subgroup two showed mainly decreased activation. The proposed technique may aid in detecting the vulnerability of the classified inpatient subgroups, which can suggest allocating the inpatients in the classified subgroups to more effective therapies and developing prognostic future relapse markers in AD.


Subject(s)
Alcoholism , Alcoholism/diagnostic imaging , Brain/physiology , Cluster Analysis , Cues , Ethanol , Humans , Inpatients , Magnetic Resonance Imaging
2.
Sensors (Basel) ; 21(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33561989

ABSTRACT

Convolutional neural networks (CNN) are relational with grid-structures and spatial dependencies for two-dimensional images to exploit location adjacencies, color values, and hidden patterns. Convolutional neural networks use sparse connections at high-level sensitivity with layered connection complying indiscriminative disciplines with local spatial mapping footprints. This fact varies with architectural dependencies, insight inputs, number and types of layers and its fusion with derived signatures. This research focuses this gap by incorporating GoogLeNet, VGG-19, and ResNet-50 architectures with maximum response based Eigenvalues textured and convolutional Laplacian scaled object features with mapped colored channels to obtain the highest image retrieval rates over millions of images from versatile semantic groups and benchmarks. Time and computation efficient formulation of the presented model is a step forward in deep learning fusion and smart signature capsulation for innovative descriptor creation. Remarkable results on challenging benchmarks are presented with a thorough contextualization to provide insight CNN effects with anchor bindings. The presented method is tested on well-known datasets including ALOT (250), Corel-1000, Cifar-10, Corel-10000, Cifar-100, Oxford Buildings, FTVL Tropical Fruits, 17-Flowers, Fashion (15), Caltech-256, and reported outstanding performance. The presented work is compared with state-of-the-art methods and experimented over tiny, large, complex, overlay, texture, color, object, shape, mimicked, plain and occupied background, multiple objected foreground images, and marked significant accuracies.

3.
Sensors (Basel) ; 20(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942721

ABSTRACT

The lack of sentiment resources in poor resource languages poses challenges for the sentiment analysis in which machine learning is involved. Cross-lingual and semi-supervised learning approaches have been deployed to represent the most common ways that can overcome this issue. However, performance of the existing methods degrades due to the poor quality of translated resources, data sparseness and more specifically, language divergence. An integrated learning model that uses a semi-supervised and an ensembled model while utilizing the available sentiment resources to tackle language divergence related issues is proposed. Additionally, to reduce the impact of translation errors and handle instance selection problem, we propose a clustering-based bee-colony-sample selection method for the optimal selection of most distinguishing features representing the target data. To evaluate the proposed model, various experiments are conducted employing an English-Arabic cross-lingual data set. Simulations results demonstrate that the proposed model outperforms the baseline approaches in terms of classification performances. Furthermore, the statistical outcomes indicate the advantages of the proposed training data sampling and target-based feature selection to reduce the negative effect of translation errors. These results highlight the fact that the proposed approach achieves a performance that is close to in-language supervised models.


Subject(s)
Algorithms , Bees , Language , Machine Learning , Animals , Cluster Analysis , Supervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...