Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996027

ABSTRACT

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Subject(s)
Killer Cells, Natural , Mesothelin , Ovarian Neoplasms , Receptors, Chimeric Antigen , Xenograft Model Antitumor Assays , Humans , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Mice , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Cell Line, Tumor , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Immunotherapy, Adoptive/methods , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/therapy , Immunologic Memory , Protein Domains
2.
Cryobiology ; 116: 104935, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38936595

ABSTRACT

Isochoric (constant-volume or volumetrically confined) vitrification has shown potential as an alternative cryopreservation-by-vitrification technique, but the complex processes at play within the chamber are yet poorly characterized, and recent investigations have prompted significant debate around whether a truly isochoric vitrification process (in which the liquid remains completely confined by solid boundaries) is indeed feasible. Based on a recent thermomechanical simulation of a high-concentration Me2SO solution, Solanki and Rabin (Cryobiology, 2023, 111, 9-15.) argue that isochoric vitrification is not feasible, because differential thermal contraction of the solution and container will necessarily drive generation of a cavity, corrupting the rigid confinement of the liquid. Here, we provide direct experimental evidence to the contrary, demonstrating cavity-free isochoric vitrification of a ∼3.5 M vitrification solution by combined isochoric pressure measurement (IPM) and photon-counting x-ray computed tomography (PC-CT). We hypothesize that the absence of a cavity is due to the minimal thermal contraction of the solution, which we support with additional volumetric analysis of the PC-CT reconstructions. In total, this study provides experimental evidence both demonstrating the feasibility of isochoric vitrification and highlighting the potential of designing vitrification solutions that exhibit minimal thermal contraction.

3.
Environ Res ; 258: 119248, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823615

ABSTRACT

To ensure the structural integrity of concrete and prevent unanticipated fracturing, real-time monitoring of early-age concrete's strength development is essential, mainly through advanced techniques such as nano-enhanced sensors. The piezoelectric-based electro-mechanical impedance (EMI) method with nano-enhanced sensors is emerging as a practical solution for such monitoring requirements. This study presents a strength estimation method based on Non-Destructive Testing (NDT) Techniques and Long Short-Term Memory (LSTM) and artificial neural networks (ANNs) as hybrid (NDT-LSTMs-ANN), including several types of concrete strength-related agents. Input data includes water-to-cement rate, temperature, curing time, and maturity based on interior temperature, allowing experimentally monitoring the development of concrete strength from the early steps of hydration and casting to the last stages of hardening 28 days after the casting. The study investigated the impact of various factors on concrete strength development, utilizing a cutting-edge approach that combines traditional models with nano-enhanced piezoelectric sensors and NDT-LSTMs-ANN enhanced with nanotechnology. The results demonstrate that the hybrid provides highly accurate concrete strength estimation for construction safety and efficiency. Adopting the piezoelectric-based EMI technique with these advanced sensors offers a viable and effective monitoring solution, presenting a significant leap forward for the construction industry's structural health monitoring practices.

4.
J Immunother Cancer ; 12(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38821719

ABSTRACT

BACKGROUND: To accelerate the translation of novel immunotherapeutic treatment approaches, the development of analytic methods to assess their efficacy at early in vitro stages is necessary. Using a droplet-based microfluidic platform, we have established a method for multiparameter quantifiable phenotypic and genomic observations of immunotherapies. Chimeric antigen receptor (CAR) natural killer (NK) cells are of increased interest in the current immunotherapy landscape and thus provide an optimal model for evaluating our novel methodology. METHODS: For this approach, NK cells transduced with a CD19 CAR were compared with non-transduced NK cells in their ability to kill a lymphoma cell line. Using our microfluidic platform, we were able to quantify the increase in cytotoxicity and synaptic contact formation of CAR NK cells over non-transduced NK cells. We then optimized our droplet sorter and successfully used it to separate NK cells based on target cell killing to perform transcriptomic analyses. RESULTS: Our data revealed expected improvement in cytotoxicity with the CD19 CAR but more importantly, provided unique insights into the factors involved in the cytotoxic mechanisms of CAR NK cells. This demonstrates a novel, improved system for accelerating the pre-clinical screening of future immunotherapy treatments. CONCLUSIONS: This study provides a new potential approach for enhanced early screening of immunotherapies to improve their development, with a highly relevant cell model to demonstrate. Additionally, our validation studies provided some potential insights into transcriptomic determinants influencing CAR NK cytotoxicity.


Subject(s)
Killer Cells, Natural , Receptors, Chimeric Antigen , Single-Cell Analysis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Single-Cell Analysis/methods , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Phenotype , Cytotoxicity, Immunologic , Genotype , Cell Line, Tumor
6.
J Ethnopharmacol ; 331: 118292, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705428

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia impetiginosa (Bignoniaceae) was traditionally used for memory enhancement and central nervous system (CNS) stimulation. AIM OF THE STUDY: This study aims to create a metabolic profile of the ethyl acetate fraction of T. impetiginosa (TEF) and investigate for the first time its neuroprotective potential on cyclophosphamide (CP)-induced chemobrain, validating its traditional use. MATERIALS AND METHODS: Metabolite profiling of TEF was performed using Liquid Chromatography coupled with Quadrupole Time of Flight-Mass/Mass Spectrometry (LC-qTOF-MS/MS). For the in vivo study, CP (200 mg/kg, i.p.) was administered to induce cognitive impairment in rats; TEF (30 mg/kg, p.o.) was administered throughout the 14 days of the experiment to assess its role in mitigating CP-induced neuronal deficits. Behavioral tests including locomotor, Y-maze, and passive avoidance tests were conducted. Additionally, biochemical markers such as reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 immunoexpression were assessed in the hippocampus area. RESULTS: Forty-four phytoconstituents were tentatively identified in TEF, mainly iridoids and organic acids. TEF showed significant memory enhancement as evidenced by the increase in step-through latency in the passive avoidance test by 1.5 folds and the increase in sequence alternation percentage (SAP) in the Y-maze test by 67.3%, as compared to CP-group. Moreover, it showed pronounced antioxidant and anti-inflammatory potentials evidenced by the significant elevation in reduced glutathione (GSH) levels by 80% and a pronounced decline in MDA and TNF-α levels by 24% and 45%, respectively relative to the CP group. TEF treatment restored normal hippocampal histological features and attenuated apoptotic caspase-3 expression by 70% compared to the CP group. CONCLUSIONS: TEF can act as a promising natural scaffold in managing the chemobrain induced by CP in cancer patients.


Subject(s)
Neuroprotective Agents , Plant Extracts , Plant Leaves , Tandem Mass Spectrometry , Animals , Neuroprotective Agents/pharmacology , Tandem Mass Spectrometry/methods , Male , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Rats , Chromatography, Liquid/methods , Hippocampus/drug effects , Hippocampus/metabolism , Phytochemicals/pharmacology , Phytochemicals/analysis , Rats, Wistar , Cyclophosphamide/toxicity , Maze Learning/drug effects , Behavior, Animal/drug effects , Glutathione/metabolism , Oxidative Stress/drug effects
7.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564033

ABSTRACT

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Subject(s)
Cymbopogon , Drinking Water , Kidney Calculi , Polyethylene Glycols , Polyethyleneimine , Urolithiasis , Animals , Rats , Petroselinum , Ammonium Chloride , Gum Arabic , Emulsions , Catalase , Magnesium , Nanogels , Urolithiasis/chemically induced , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Seeds , Antioxidants/therapeutic use , Ethanol , Glutathione , Oxalates , Ethylene Glycols , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
8.
Methods Mol Biol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38441722

ABSTRACT

The exquisite balance between cellular prosurvival and death pathways is extremely necessary for homeostasis. Different forms of programmed cell death have been widely studied and reported such as apoptosis, necroptosis, pyroptosis, and autophagy. Autophagy is a catabolic process important for normal cellular functioning. The main aim of this machinery is to degrade the misfolded or damaged proteins, unuseful organelles, and pathogens, which invade the cells, thereby maintaining cellular homeostasis and assuring the regular renewal of cell components. This prosurvival function of autophagy highlights its importance in many human diseases, as the disturbance of this tightly organized process ultimately causes detrimental effects. Interestingly, neurons are particularly susceptible to damage upon the presence of any alteration in the basal level of the autophagic activity; this could be due to their high metabolic demand, post-mitotic nature, and the contribution of autophagy in the different fundamental functions of neurons. Herein, we have reported the role of autophagy in different CNS disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and epilepsy, besides the pharmacological agents targeting autophagy. Due to the significant contribution of autophagy in the pathogenesis of many diseases, it is crucial to develop effective methods to detect this dynamic process. In this chapter, we have summarized the most frequently employed techniques in studying and detecting autophagy including electron microscopy, fluorescence microscopy, Western blotting, intracellular protein degradation, and sequestration assay.

9.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542956

ABSTRACT

Natural products, particularly medicinal plants, are crucial in combating cancer and aiding in the discovery and development of new therapeutic agents owing to their biologically active compounds. They offer a promising avenue for developing effective anticancer medications because of their low toxicity, diverse chemical structures, and ability to target various cancers. Allicin is one of the main ingredients in garlic (Allium sativum L.). It is a bioactive sulfur compound maintained in various plant sections in a precursor state. Numerous studies have documented the positive health benefits of this natural compound on many chronic conditions, including gastric, hepatic, breast, lung, cervical, prostate, and colon cancer. Moreover, allicin may target several cancer hallmarks or fundamental biological traits and functions that influence cancer development and spread. Cancer hallmarks include sustained proliferation, evasion of growth suppressors, metastasis, replicative immortality, angiogenesis, resistance to cell death, altered cellular energetics, and immune evasion. The findings of this review should provide researchers and medical professionals with a solid basis to support fundamental and clinical investigations of allicin as a prospective anticancer drug. This review outlines the anticancer role of allicin in each hallmark of cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Garlic , Plants, Medicinal , Male , Humans , Plant Extracts/chemistry , Prospective Studies , Sulfinic Acids/chemistry , Disulfides , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Garlic/chemistry
10.
Saudi Med J ; 45(2): 171-178, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309726

ABSTRACT

OBJECTIVES: To investigate the relationship between statin use and coronavirus disease-19 (COVID-19) severity. METHODS: This was a retrospective study of adult patients with confirmed COVID-19 who were hospitalized at Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia. The study was carried out from July - September 2020. Antecedent statin use was evaluated using medication information available in the electronic medical records. RESULTS: In this retrospective study, we collected data from 689 patients hospitalized with COVID-19. Among the patients, 56.2% of them were non-Saudi and 67.3% were males. The mean age of the patients was 53.7 years. The most common comorbidities among patients with COVID-19 at admission were hypertension (65.2%) and diabetes mellitus (65%). Among these patients, 155 (22.5%) patients received statins during hospitalization and 79.7% of them received corticosteroids. Receiving statins significantly increased the risk of intensive care unit's admission by 1.64 times, intubation by 1.76 times, developing complications by 2.48 times, and mortality by 3.16 times. CONCLUSION: Statins are associated with a higher risk of mortality and morbidity among patients hospitalized for COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Adult , Male , Humans , Middle Aged , Female , Retrospective Studies , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Saudi Arabia/epidemiology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology
11.
Bioorg Chem ; 145: 107225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402797

ABSTRACT

The study presents a significant advancement in drug delivery and therapeutic efficacy through the successful synthesis of Gliricidia sepium(Jacq.) Kunth. ex. Walp., stem zinc oxide nanoparticles(GSS ZnONPs). The phenolic compounds present in Gliricidia sepium stem (GSS) particularly vanillic acid, apegnin-7-O-glucoside, syringic acid, and p-coumaric acid which were identified by HPLC. These compounds shown antioxidant and anti-inflammatory properties. GSS ZnONPs demonstrate pronounced gastroprotective effects against ethanol-induced gastritis, evidenced by the reduction in gastric lesions and mucosal injury upon its treatment. Histopathological evaluation and immunohistochemical analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) expression further validate these results, revealing the amelioration of ethanol-induced gastritis and improved gastric tissue condition due to their treatment. Noteworthy is the dose-dependent response of GSS ZnONPs, showcasing their efficacy even at lower doses against ethanol-induced gastritis which is confirmed by different biomarkers. These findings have substantial implications for mitigating dosage-related adverse effects while preserving therapeutic benefits, offering a more favorable treatment approach. This study aims to investigate the potential gastroprotective activity of GSS ZnONPs against gastritis.


Subject(s)
Gastritis , Stomach Ulcer , Zinc Oxide , Rats , Animals , Ethanol , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy , Anti-Inflammatory Agents/therapeutic use , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology
12.
Article in English | MEDLINE | ID: mdl-38211969

ABSTRACT

BACKGROUND AND HYPOTHESIS: IgA vasculitis with nephritis (IgAVN) is the most common vasculitis in children. Treatment recommendations are, due to a lack of evidence, based on expert opinion resulting in variation. The aim of this study was to describe clinical presentation, treatment and outcome of an extremely large cohort of children with biopsy proven IgAVN to identify prognostic risk factors and signals of treatment efficacy. METHODS: Retrospective data were collected on 1148 children with biopsy proven IgAVN between 2005 and 2019 from 41 international paediatric nephrology centres across 25 countries and analyzed using multivariate analysis. The primary outcome was estimated glomerular filtration rate (eGFR) and persistent proteinuria at last follow up. RESULTS: The median follow up was 3.7 years (IQR 2-6.2). At last follow up, 29% of patients had an eGFR < 90 ml/min/1.73m2, 36% had proteinuria and 3% had chronic kidney disease stage 4-5. Older age, lower eGFR at onset, hypertension and histological features of tubular atrophy and segmental sclerosis were predictors of poor outcome. There was no evidence to support any specific second line immunosuppressive regimen to be superior to others, even when further analysing subgroups of children with reduced kidney function, nephrotic syndrome or hypoalbuminemia at onset. Delayed start of immunosuppressive treatment was associated with a lower eGFR at last follow up. CONCLUSION: In this large retrospective cohort, key features associated with disease outcome are highlighted. Importantly there was no evidence to support that any specific immunosuppressive treatments were superior to others. Further discovery science and well-conducted clinical trials are needed to define accurate treatment and improve outcomes of IgAVN.

13.
Arch Pharm (Weinheim) ; 357(2): e2300383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946599

ABSTRACT

A novel series of triazole-benzohydrazone hybrids was efficiently designed and synthesized as antiproliferative agents, targeting different kinases. All compounds were screened via the National Cancer Institute (NCI) against 60 cancer cell lines, where compounds 16, 17, and 18 exhibited growth inhibition percent (GI%) of various leukemia subpanels with values of 70.33%, 64.13%, and 76.03%, respectively. Compound 18 showed broad-spectrum antiproliferative efficacy toward most cancer cells, with outstanding potency regarding melanoma (MALME-3M GI% = 101.82%) and breast cancer cell lines (MCF7 GI% = 85.87%), while proving safe toward the WI-38 normal cell line, compared to doxorubicin. Multikinase investigation including vascular endothelial growth factor receptor 2 (VEGFR-2), mesenchymal epithelial transition factor (c-Met), proto-oncogene B-Raf, mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, and phosphoinositide 3-kinase was accomplished to reveal its plausible mechanism of action, giving the ultimate potency against both VEGFR-2 and c-Met with IC50 values of 0.055 and 0.042 µM, respectively, while displaying moderate to good inhibition concerning the remaining kinases. DNA binding capability was excluded using the methyl green colorimetric assay. Further, it exhibited both early and late apoptotic induction by about 16- and 9.4-fold over the control, respectively, triggering cell cycle arrest in the G2/M phase. Physicochemical properties and bioavailability radar plot inferred drug-likeness characteristics for compound 18. The molecular docking study assessed the binding pattern with the active sites of c-Met and VEGFR-2.


Subject(s)
Antineoplastic Agents , Triiodobenzoic Acids , Vascular Endothelial Growth Factor Receptor-2 , Humans , Structure-Activity Relationship , Molecular Docking Simulation , Cell Line, Tumor , Triazoles/pharmacology , Triazoles/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Structure
14.
Life Sci ; 335: 122245, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37926296

ABSTRACT

AIMS: Carfilzomib, an irreversible proteasome inhibitor, has been increasingly used to treat multiple myeloma worldwide. However, case studies showed its treatment has been associated with cardiac, renal, and pulmonary deleterious effects. Lactoferrin is an iron-binding glycoprotein present in milk. It is a multifunctional protein with antimicrobial activity, antitumor, antioxidant, and anti-inflammatory effects. Thus, this study aimed to assess the protective effects of lactoferrin against carfilzomib-induced nephrotoxicity and pulmonary toxicity, in addition to identifying the possible underlying molecular mechanisms. MAIN METHODS: Mice were treated with lactoferrin (300 mg/kg/day) concomitantly with carfilzomib (4 mg/kg, i.p.) twice weekly for three weeks. Kidney and lung indices, serum creatinine, blood urea nitrogen (BUN), uric acid, kidney injury molecule-1 (KIM-1), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histological examination were assessed. In addition, biochemical analyses of the inflammasome NLRP3/NF-κB and PI3K/Akt/GSK-3ß/MAPK axes were conducted. KEY FINDINGS: Treatment with lactoferrin decreased serum levels of creatinine, BUN, uric acid, KIM-1, ALP, AST, and LDH and reversed carfilzomib-induced histological changes in both kidney and lung. The inflammatory markers NLRP3, p65 NF-kB, caspases1, interleukin-1ß, and interleukin-18, as well as the MAPK signaling pathway, were significantly reduced in renal and pulmonary tissues of mice following lactoferrin administration. Moreover, lactoferrin significantly counteracted carfilzomib-induced reduced expression of pAkt and pGSK-3ß in both renal and pulmonary tissues. SIGNIFICANCE: The current study suggests lactoferrin might be a promising candidate for ameliorating carfilzomib-induced nephrotoxicity and pulmonary toxicity.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-akt , Mice , Animals , NF-kappa B/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Inflammasomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lactoferrin/pharmacology , Uric Acid/metabolism , Kidney/metabolism , Lung/metabolism
15.
Front Chem ; 11: 1279948, 2023.
Article in English | MEDLINE | ID: mdl-38033474

ABSTRACT

Presently, the main cause of pollution of natural water resources is heavy metal ions. The removal of metal ions such as nickel (Ni2+) and cadmium (Cd2+) has been given considerable attention due to their health and environmental risks. In this regard, for wastewater treatment containing heavy metal ions, graphene oxide (GO) nanocomposites with metal oxide nanoparticles (NPs) attained significant importance. In this study, graphene oxide stacked with copper oxide nanocomposites (GO/CuO-NCs) were synthesized and characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and atomic force microscopy (AFM) analytical procedures. The prepared GO/CuO-NCs were applied for the removal of Ni2+ and Cd2+ ions from a binary metal ion system in batch and continuous experiments. The obtained results revealed that GO/CuO-NCs exhibited the highest removal efficiencies of Ni2+ (89.60% ± 2.12%) and Cd2+ (97.10% ± 1.91%) at the optimum values of pH: 8, dose: 0.25 g, contact time: 60 min, and at 50 ppm initial metal ion concentration in a batch study. However, 4 mL/min flow rate, 50 ppm initial concentration, and 2 cm bed height were proved to be the suitable conditions for metal ion adsorption in the column study. The kinetic adsorption data exhibited the best fitting with the pseudo-second-order model. The adsorption isotherm provided the best-fitting data in the Langmuir isotherm model. This study suggested that the GO/CuO nanocomposites have proved to be efficient adsorbents for Ni2+ and Cd2+ ions from a binary metal system.

16.
Sci Rep ; 13(1): 15545, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730905

ABSTRACT

Perfect absorbers can be used in photodetectors, thermal imaging, microbolometers, and thermal photovoltaic solar energy conversions. The spectrum of Mid-infrared (MIR) wavelengths offers numerous advantages across a wide range of applications. In this work, we propose a fractal MIR broadband absorber which is composed of three layers: metal, dielectric, and metal (MDM), with the metal being considered as n-type doped silicon (D-Si) and the dielectric is silicon carbide (SiC). The architectural design was derived from the Sierpinski carpet fractal, and different building blocks were simulated to attain optimal absorption. The 3D finite element method (FEM) approach using COMSOL Multiphysics software is used to obtain numerical results. The suggested fractal absorber exhibits high absorption enhancement for MIR in the range between 3 and 9 µm. D-Si exhibits superior performance compared to metals in energy harvesting applications that utilize plasmonics at the mid-infrared range. Typically, semiconductors exhibit rougher surfaces than noble metals, resulting in lower scattering losses. Moreover, silicon presents various advantages, including compatibility with complementary metal-oxide-semiconductor (CMOS) and simple manufacturing through conventional silicon fabrication methods. In addition, the utilization of doped silicon material in the mid-IR region facilitates the development of microscale integrated plasmonic devices.

17.
Cell Mol Immunol ; 20(10): 1140-1155, 2023 10.
Article in English | MEDLINE | ID: mdl-37553427

ABSTRACT

Natural killer (NK) cells are predominant innate lymphocytes that initiate the early immune response during infection. NK cells undergo a metabolic switch to fuel augmented proliferation and activation following infection. Tumor necrosis factor-alpha (TNFα) is a well-known inflammatory cytokine that enhances NK cell function; however, the mechanism underlying NK cell proliferation in response to TNFα is not well established. Here, we demonstrated that upon infection/inflammation, NK cells upregulate the expression of TNF receptor 2 (TNFR2), which is associated with increased proliferation, metabolic activity, and effector function. Notably, IL-18 can induce TNFR2 expression in NK cells, augmenting their sensitivity toward TNFα. Mechanistically, TNFα-TNFR2 signaling upregulates the expression of CD25 (IL-2Rα) and nutrient transporters in NK cells, leading to a metabolic switch toward aerobic glycolysis. Transcriptomic analysis revealed significantly reduced expression levels of genes involved in cellular metabolism and proliferation in NK cells from TNFR2 KO mice. Accordingly, our data affirmed that genetic ablation of TNFR2 curtails CD25 upregulation and TNFα-induced glycolysis, leading to impaired NK cell proliferation and antiviral function during MCMV infection in vivo. Collectively, our results delineate the crucial role of the TNFα-TNFR2 axis in NK cell proliferation, glycolysis, and effector function.


Subject(s)
Receptors, Tumor Necrosis Factor, Type II , Tumor Necrosis Factor-alpha , Mice , Animals , Receptors, Tumor Necrosis Factor, Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism , Killer Cells, Natural , Cytokines/metabolism , Cell Proliferation
18.
Avicenna J Med ; 13(2): 97-103, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37435553

ABSTRACT

Background Medical students' career choices determine the prospects of the future medical workforce, thus influencing the delivery of medical care. This study aims to identify and provide information about factors affecting the selection of future specialties among medical students. Methods A cross-sectional study was conducted on students in both preclerkship and clerkship phases at a single institution in the United Arab Emirates. A self-administered questionnaire included questions about demographic data, most preferred specialties, and influential factors. The influential factors were measured using a Likert scale. Results Surgery and internal medicine were the most desired specialties, respectively. Gender has a significant role in influencing career choice. There was no association between preclerkship and clerkship students' career choices. The most influential factors were seeing good treatment outcomes and having abilities for the specialty. Conclusions Surgery and internal medicine were the most preferred specialties, even though significant gender differences existed in specialty choices among these students.

19.
J Biomol Struct Dyn ; : 1-14, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37288800

ABSTRACT

Chlamydia trachomatis (C. trachomatis) is an obligate intracellular bacterium which causes eye and sexually transmitted infections. During pregnancy, the bacterium is associated with preterm complications, low weight of neonates, fetal demise and endometritis leading to infertility. The aim of our study was design of a multi-epitope vaccine (MEV) candidate against C. trachomatis. After protein sequence adoption from the NCBI, potential epitopes toxicity, antigenicity, allergenicity, MHC-I and MHC-II binding, cytotoxic T lymphocytes (CTLs), Helper T lymphocytes (HTLs) and interferon-γ (IFN-γ)- induction were predicted. The adopted epitopes were fused together using appropriate linkers. In the next step, the MEV structural mapping and characterization, three-dimensional (3D) structure homology modeling and refinement were also performed. The MEV candidate interaction with the toll-like receptor 4 (TLR4) was also docked. The immune responses simulation was assessed using the C-IMMSIM server. Molecular dynamic (MD) simulation verified the structural stability of the TLR4-MEV complex. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach demonstrated the MEV high affinity of binding to the TLR4, MHC-I and MHC-II. The MEV construct was also stable and water soluble and had enough antigenicity and lacked allergenicity with stimulation of T cells and B cells and INF-γ release. The immune simulation confirmed acceptable responses of both the humoral and cellular arms. It is proposed that in vitro and in vivo studies are needed to evaluate the findings of this study.Communicated by Ramaswamy H. Sarma.

20.
Sci Rep ; 13(1): 7703, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169856

ABSTRACT

Breast cancer is the second leading cause of cancer death among women. The present study is an effort to reveal the antiproliferative and antioxidant actions of mango seed kernel extract (KE), peel extract (PE), and their combination (KEPE) on mammary tumors induced by 7,12 dimethylbenz[a]anthracene (DMBA). Seven groups of adult female Sprague-Dawley rats were prepared, including C: (control), DMBA: (rats were administered with DMBA), (DMBA-KE), (DMBA-PE), and (DMBA-KEPE): rats were administered with DMBA and then treated with KE, PE, and (both KE and PE), respectively, (KE) and (PE): rats were administered with KE and PE, separately. The study focused on the assessment of markers of endocrine derangement [serum 17-ß estradiol (E2)], apoptosis [caspase-3 and deoxyribonucleic acid fragmentation (DNAF)], and oxidative stress [lipid peroxidation and antioxidants (glutathione, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and superoxide dismutase)]. Histopathological examination and immunohistochemical expression of caspase-3 and estrogen receptor-α (ER-α) in mammary gland tissues (MGTs) were determined, as well as the characterization of mango extracts. The results showed that DMBA administration induced mammary tumors by increasing cell proliferation and evading apoptosis. In addition, DMBA administration caused oxidative stress by the production of reactive oxygen species, which increased lipid peroxidation and decreased cellular antioxidants, allowing cancer to progress. In contrast, treatment with DMBA-KE, DMBA-PE, or DMBA-KEPE diminished mammary tumors induced by DMBA, where they reduced oxidative stress via increased antioxidant parameters including reduced glutathione, superoxide dismutase, total glutathione peroxidase, glutathione reductase, and glutathione S-transferase. Also, different treatments decreased proliferation through the reduction of E2, and ER-α expression levels. However, these treatments increased the apoptosis of unwanted cells as they increased caspase-3 activity and DNAF. All these changes led to the prevention of breast injuries and the reduction of mammary tumors. This demonstrates that the contents of mango extracts, especially phenolics and flavonoids, have an important role in mammary tumor treatment through their potential antioxidant, antiproliferative, proapoptotic, and anti-estrogenic effects. KE and PE administration for 4 weeks had no adverse effects. Conclusion: Each of KE, PE, and KEPE has a therapeutic effect against DMBA-induced mammary tumors via induction of apoptosis and reduction of each of the OS, proliferation, and estrogenic effects. So, they can play an important role in the pharmacological tole.


Subject(s)
Mammary Neoplasms, Experimental , Mangifera , Rats , Female , Animals , Antioxidants/metabolism , Rats, Sprague-Dawley , Mangifera/metabolism , Caspase 3 , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/prevention & control , Glutathione , Superoxide Dismutase , Carcinogenesis , Oxidoreductases
SELECTION OF CITATIONS
SEARCH DETAIL
...