Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 271(Pt 1): 132354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750852

ABSTRACT

The utilization of biopolymer-based food packaging holds significant promise in aligning with sustainability goals and enhancing food safety by offering a renewable, biodegradable, and safer alternative to traditional synthetic polymers. However, these biopolymer-derived films often exhibit poor barrier and mechanical properties, potentially limiting their commercial viability. Desirable barrier properties, such as moisture and oxygen resistance, are critical for preserving and maintaining the quality of packaged food products. This review comprehensively explores different traditional and advance methodologies employed to access the barrier properties of edible films. Additionally, this review thoroughly examines various approaches aimed at enhancing the barrier properties of edible films, such as the fabrication of multilayer films, the selection of biopolymers for composite films, as well as the integration of plasticizers, crosslinkers, hydrophobic agents, and nanocomposites. Moreover, the influence of process conditions, such as preparation techniques, homogenization, drying conditions, and rheological behavior, on the barrier properties of edible films has been discussed. The review provides valuable insights and knowledge for researchers and industry professionals to advance the use of biopolymer-based packaging materials and contribute to a more sustainable and food-safe future.


Subject(s)
Edible Films , Food Packaging , Food Packaging/methods , Biopolymers/chemistry , Nanocomposites/chemistry , Permeability , Plasticizers/chemistry
2.
Open Life Sci ; 18(1): 20220789, 2023.
Article in English | MEDLINE | ID: mdl-38027224

ABSTRACT

This study aimed to efficiently utilize catfish heads, enhancing the oil extraction process while improving the cost-effectiveness of fish byproduct management. The study employed the wet rendering method, a solvent-free approach, utilizing a two-factor Taguchi orthogonal array design to identify critical parameters for optimizing oil yield and ensuring high-quality oil attributes. The extraction temperature (80-120°C) and time (5-25 min) were chosen as variables in the wet rendering process. Range analysis identified the extraction time as a more significant (p < 0.05) factor for most parameters, including oil yield, oil recovery, acid value, free fatty acids, peroxide value, and thiobarbituric acid reactive substances. The extraction temperature was more significant (p < 0.05) for oil color. Consequently, the wet rendering method was optimized, resulting in an extraction temperature of 80°C and an extraction time of 25 min, yielding the highest oil yield. This optimized wet rendering process recovered 6.37 g/100 g of oil with an impressive 54.16% oil recovery rate, demonstrating comparable performance to traditional solvent extraction methods. Moreover, Fourier transfer infrared spectra analysis revealed distinct peaks associated with triacylglycerols and polyunsaturated fatty acids (PUFA). The oil recovered under optimized conditions contained higher levels of PUFA, including oleic acid (189.92 µg/g of oil), linoleic acid (169.92 µg/g of oil), eicosapentaenoic acid (17.41 µg/g of oil), and docosahexaenoic acid (20.82 µg/g of oil). Volatile compound analysis revealed lower levels of secondary oxidation compounds under optimized conditions. This optimized wet rendering method offers practical advantages in terms of cost-efficiency, sustainability, reduced environmental impact, and enhanced oil quality, making it an attractive option for the fish processing industries. Future research possibilities may include the purification of the catfish head oil and its application in the food and pharmaceutical industries.

3.
J Sci Food Agric ; 101(7): 2718-2726, 2021 May.
Article in English | MEDLINE | ID: mdl-33124041

ABSTRACT

BACKGROUND: The poultry industry is one of the fastest growing sectors, and it generates considerable quantities of chicken gizzards (CG) every day. However, due to their hard texture and high microbial load, and due to cultural beliefs, they are not preferred by consumers. Chicken gizzards are a substantial source of proteins, iron, and other nutrients, which can be used effectively to produce nutraceuticals, rich in peptides (antioxidants and antibacterial), bio-iron, essential free amino acids, and fatty acids vital for human health. RESULTS: Lactic acid fermentation of CG by Pediococcus acidilactici ATTC 8042 increased the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), azino-bis (3-ethylbenzothiaziline-6-sulphonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) by up to 26 times compared with unfermented CG (P < 0.05). The amount of hydrolysis and solvents (ethanol and water) used for extracting protein hydrolysates significantly affected the antioxidant properties. Moreover, fermented CG showed a negligible reduction in bio-iron (2-3%) compared with heat-processed CG (85 °C for 15 min), in which bio-iron was reduced by up to 20.3% (P < 0.05). The presence of unsaturated fatty acids such as C20:4 and C22:4 n-6 indicated a low level of lipid oxidation. CONCLUSION: Fermented CG, with its reasonably high antioxidant and antibacterial activity, together with a substantial amount of bio-iron and other nutritional components can serve as a functional food or feed additive to reduce oxidative stress and to treat iron deficiency. © 2020 Society of Chemical Industry.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Gizzard, Avian/microbiology , Iron/pharmacology , Pediococcus acidilactici/metabolism , Animals , Avian Proteins/metabolism , Avian Proteins/pharmacology , Biotransformation , Chickens , Fermentation , Gizzard, Avian/metabolism , Iron/metabolism , Protein Hydrolysates/metabolism , Protein Hydrolysates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...