Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Langmuir ; 39(47): 16760-16775, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37955990

ABSTRACT

The inherent disadvantages of traditional nonflexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues, different techniques have been used to incorporate the flexibility in aerogel materials; hence, the term "flexible aerogels" was introduced. In the case of introducing flexibility, the organic part is induced with the inorganic part (flexible hybrid aerogels). Additionally, some more modern research is also available in the fabrication of hybrid flexible aerogels (based on organic-organic), the combination of two organic polymers. Moreover, a new type (single-component flexible aerogels) are quite a new category composed of only single materials; this category is very limited, charming to make the flexible aerogels pure from single polymers. The present review is composed of modern techniques and studies available to fabricate hybrid and single-component flexible aerogels. Their synthesis, factors affecting their parameters, and limitations associated with them are explained deeply. Moreover, a comparative analysis of drying methods and their effectiveness in the development of structures are described in detail. The further sections explain their properties and characterization methods. Eventually, their applications in a variety of multifunctional fields are covered. This article will support to introduce the roadmap pointing to a future direction in the production of the single-component flexible aerogel materials and their applications.

2.
Heliyon ; 9(10): e20822, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37886785

ABSTRACT

Textile-based photocatalysts are the new materials that can be utilized as an effective sustainable solution for biochemical hazards. Hence, we aimed to develop a sustainable, cost-effective, and facile approach for the fabrication of photocatalytic fabric using graphitic carbon nitride (g-C3N4) and ferric-based multifunctional nanocomposite. Bulk g-C3N4 was prepared from urea by heating it at 500 °C for 2 h. The structure of ball-milled g-C3N4 was engineered by doping with various amounts of iron (III) chloride hexahydrate solution (0.006 mol/L) and sintered at 90 °C for 24 h to prepare g-C3N4-nanosheets/α-Fe2O3 composites. These nanocomposites have potential avenues towards rational designing of g-C3N4 for improved photocatalytic, antibacterial, and antiviral behavior. The prepared nanocomposite was characterized for its surface morphology, chemical composition, crystal structure, catalytic, antibacterial, and antiviral behavior. The fabrication of ferric doped g-C3N4 nanocomposites was characterized by SEM, EDX, FTIR, and XRD analysis. The coated fabric nanocomposite was characterized for methylene blue dye degradation under visible light, antibacterial and antiviral behavior. The developed textile-based photocatalyst has been found with very good recyclability with photocatalytic degradation of dye up to 99.9 % when compared to conventional g-C3N4 powder-based photocatalyst.

3.
Sci Rep ; 13(1): 13975, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37634040

ABSTRACT

Antimicrobial and multidrug resistance (MDR) pathogens are becoming one of the major health threats among children. Integrated studies on the molecular epidemiology and prevalence of AMR and MDR diarrheal pathogens are lacking. A total of 404 fecal specimens were collected from children with diarrhea in Bangladesh from January 2019 to December 2021. We used conventional bacteriologic and molecular sequence analysis methods. Phenotypic and genotypic resistance were determined by disk diffusion and molecular sequencing methods. Fisher's exact tests with 95% confidence intervals (CIs) was performed. Prevalence of bacterial infection was 63% (251 of 404) among children with diarrhea. E. coli (29%) was the most prevalent. E. coli, Shigella spp., V. cholerae, and Salmonella spp., showed the highest frequency of resistance against ceftriaxone (75-85%), and erythromycin (70-75%%). About 10-20% isolates of E. coli, V. cholerae and Shigella spp. showed MDR against cephem, macrolides, and quinolones. Significant association (p value < 0.05) was found between the phenotypic and genotypic resistance. The risk of diarrhea was the highest among the patients co-infected with E. coli and rotavirus [OR 3.6 (95% CI 1.1-5.4) (p = 0.001)] followed by Shigella spp. and rotavirus [OR 3.5 (95% CI 0.5-5.3) (p = 0.001)]. This study will provide an integrated insight of molecular epidemiology and antimicrobial resistance profiling of bacterial pathogens among children with diarrhea in Bangladesh.


Subject(s)
Escherichia coli , Quinolones , Humans , Child , Bangladesh/epidemiology , Molecular Epidemiology , Escherichia coli/genetics , Diarrhea/epidemiology
4.
Heliyon ; 9(4): e15482, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37151686

ABSTRACT

Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.

5.
Orthod Craniofac Res ; 26(2): 285-296, 2023 May.
Article in English | MEDLINE | ID: mdl-36177997

ABSTRACT

OBJECTIVES: Wax typodonts are widely used as pre-clinical teaching tools to test and research the complex force systems created by archwire activations, however, a limitation is the inability to quantify the resultant statically indeterminate tooth movements. The aim of this study was to develop an analogue-to-digital typodont system to quantify the effects of archwire activations on individual typodont teeth in three dimensions. METHODS: The typodont system was developed using CAD/CAM technology. Posterior expansion, squared, tapered, asymmetrical arch forms and reversed curve of Spee activations were tested with three repeats. The resulting three-dimensional movements of individual typodont teeth were assessed with six degrees of freedom (df). Cartesian coordinate systems were set for each tooth. Mesio-distal, bucco-lingual and intrusive-extrusive movements were assessed as changes in the location of the geometrically estimated centre of resistance in the x, y and z axes, respectively. Torque, tip and rotation movements were assessed as the rotations around the mesio-distal, bucco-lingual and intrusive-extrusive axes, respectively. RESULTS: Individual typodont tooth displacements from each activation could reliably be described with six df. The transversal-to-sagittal movement ratio ranged from 2:1 to 7:1, depending on the activation. Asymmetrical arch form activations caused a midline shift and affected the lateral overjet. Reversing the curve of Spee led to intrusion of incisors and second molars, extrusion of premolars and first molars and pronounced first and third order effects. CONCLUSION: The digital typodont system is a promising teaching tool. The tested activations have implications in three dimensions, which should be considered when planning tooth movements.


Subject(s)
Malocclusion , Humans , Molar , Bicuspid , Incisor , Tooth Movement Techniques/methods
6.
Gels ; 10(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275842

ABSTRACT

The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.

7.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364700

ABSTRACT

This study aimed to develop injectable chitosan oligosaccharide (COS) and bovine hydroxyapatite (BHA) hybrid biocomposites, and characterise their physiochemical properties for use as a dental pulp-capping material. The COS powder was prepared from chitosan through hydrolytic reactions and then dissolved in 0.2% acetic acid to create a solution. BHA was obtained from waste bovine bone and milled to form a powder. The BHA powder was incorporated with the COS solution at different proportions to create the COS-BHA hybrid biocomposite. Zirconium oxide (ZrO2) powder was included in the blend as a radiopacifier. The composite was characterised to evaluate its physiochemical properties, radiopacity, setting time, solubility, and pH. Fourier-transform infrared spectroscopic analysis of the COS-BHA biocomposite shows the characteristic peaks of COS and hydroxyapatite. Compositional analysis via ICP-MS and SEM-EDX shows the predominant elements present to be the constituents of COS, BHA, and ZrO2. The hybrid biocomposite demonstrated an average setting time of 1 h and 10 min and a pH value of 10. The biocomposite demonstrated solubility when placed in a physiological solution. Radiographically, the set hybrid biocomposite appears to be more radiopaque than the commercial mineral trioxide aggregate (MTA). The developed COS-BHA hybrid biocomposite demonstrated good potential as a pulp-capping agent exhibiting high pH, with a greater radiopacity and reduced setting time compared to MTA. Solubility of the biocomposite may be addressed in future studies with the incorporation of a cross-linking agent. However, further in vitro and in vivo studies are necessary to evaluate its clinical feasibility.

8.
Nanomaterials (Basel) ; 12(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36296819

ABSTRACT

In the current study, a sustainable approach was adopted for the green synthesis of silver nanoparticles, green synthesis of copper nanoparticles, and the investigation of the phytochemical and biological screening of bark, leaves, and fruits of Ehretia acuminata (belongs to the family Boraginaceae). Subsequently, the prepared nanoparticles and extracted phytochemicals were loaded on cotton fibres. Surface morphology, size, and the presence of antimicrobial agents (phytochemicals and particles) were analysed by scanning electron microscopy, dynamic light scattering, and energy-dispersive X-ray spectroscopy. The functional groups and the presence of particles (copper and silver) were found by FTIR and XRD analyses. The coated cotton fibres were further investigated for antibacterial (qualitative and quantitative), antiviral, and antifungal analysis. The study revealed that the herb-encapsulated nanoparticles can be used in numerous applications in the field of medical textiles. Furthermore, the utility of hygienic and pathogenic developed cotton bandages was analysed for the comfort properties regarding air permeability and water vapour permeability. Finally, the durability of the coating was confirmed by measuring the antibacterial properties after severe washing.

9.
Virus Res ; 319: 198873, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35868353

ABSTRACT

Klebsiella pneumoniae, a multidrug resistant bacterium that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. In this study, a novel bacteriophage IME184, was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization exhibited this phage belongs to the Molineuxvirinae genus, Autographiviridae family. Phage IME184 possessed a double-stranded DNA genome composed of 44,598 bp with a GC content of 50.3%. The phage genome encodes 57 open reading frames, out of 26 are hypothetical proteins while 31 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME184 has 94% similarity with genomic sequence of Klebsiella phage K1-ULIP33 (MK380014.1). Multiplicity of infection, one step growth curve and host range of phage were also measured. According to findings, Phage IME184 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.


Subject(s)
Bacteriophages , Caudovirales , Anti-Bacterial Agents , Caudovirales/genetics , Genome, Viral , Genomics , Klebsiella pneumoniae/genetics , Phylogeny
10.
Polymers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406163

ABSTRACT

Conventional conductive homopolymers such as polypyrrole and poly-3,4-ethylenedioxythiophene (PEDOT) have poor mechanical properties, for the solution to this problem, we tried to construct hybrid composites with higher electrical properties coupled with high mechanical strength. For this purpose, Kevlar fibrous waste, conductive carbon particles, and epoxy were used to make the conductive composites. Kevlar waste was used to accomplish the need for economics and to enhance the mechanical properties. At first, Kevlar fibrous waste was converted into a nonwoven web and subjected to different pretreatments (chemical, plasma) to enhance the bonding between fiber-matrix interfaces. Similarly, conductive carbon particles were converted into nanofillers by the action of ball milling to make them homogeneous in size and structure. The size and morphological structures of ball-milled particles were analyzed by Malvern zetasizer and scanning electron microscopy. In the second phase of the study, the conductive paste was made by adding the different concentrations of ball-milled carbon particles into green epoxy. Subsequently, composite samples were fabricated via a combination of prepared conductive pastes and a pretreated Kevlar fibers web. The influence of different concentrations of carbon particles into green epoxy resin for electrical conductivity was studied. Additionally, the electrical conductivity and electromagnetic shielding ability of conductive composites were analyzed. The waveguide method at high frequency (i.e., at 2.45 GHz) was used to investigate the EMI shielding. Furthermore, the joule heating response was studied by measuring the change in temperature at the surface of the conductive composite samples, while applying a different range of voltages. The maximum temperature of 55 °C was observed when the applied voltage was 10 V. Moreover, to estimate the durability and activity in service the ageing performance (mechanical strength and moisture regain) of developed composite samples were also analyzed.

11.
Sci Rep ; 12(1): 3630, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256663

ABSTRACT

Scarcity of energy and pollution are two major challenges that have become a threat to all living things worldwide. Bioethanol is a renewable, ecological-friendly clean energy that may be utilized to address these issues. This study aimed to develop simultaneous saccharification and fermentation (SSF) process through high temperature-substrate adaptation and co-cultivation of S. cerevisiae with other potential amylolytic strains. In this study, we adapted our previously screened thermosensitive Saccharomyces cerevisiae Dj-3 strain up-to 42 °C and also screened three potential thermotolerant amylolytic strains based on their starch utilization capability. We performed SSF fermentation at high temperature by adapted Dj-3 and amylolytic strains using 10.0% starch feedstock. Interestingly, we observed significant ethanol concentration [3.86% (v/v)] from high temperature simultaneous saccharification and fermentation (HSSF) of adapted Bacillus amyloliquefaciens (C-7) and Dj-3. We attribute the significant ethanol concentration from starch of this HSSF process to C-7's high levels of glucoamylase activity (4.01 U/ml/min) after adaptation in starch (up-to 42 °C) as well as Dj-3's strong glucose fermentation capacity and also their ethanol stress tolerance capability. This study suggests the significant feasibility of our HSSF process.


Subject(s)
Bacillus amyloliquefaciens , Saccharomyces cerevisiae , Ethanol , Fermentation , Starch , Temperature
12.
Infect Drug Resist ; 14: 5041-5055, 2021.
Article in English | MEDLINE | ID: mdl-34876823

ABSTRACT

The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.

13.
Gels ; 7(4)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34940324

ABSTRACT

The term aerogel is used for unique solid-state structures composed of three-dimensional (3D) interconnected networks filled with a huge amount of air. These air-filled pores enhance the physicochemical properties and the structural characteristics in macroscale as well as integrate typical characteristics of aerogels, e.g., low density, high porosity and some specific properties of their constituents. These characteristics equip aerogels for highly sensitive and highly selective sensing and energy materials, e.g., biosensors, gas sensors, pressure and strain sensors, supercapacitors, catalysts and ion batteries, etc. In recent years, considerable research efforts are devoted towards the applications of aerogels and promising results have been achieved and reported. In this thematic issue, ground-breaking and recent advances in the field of biomedical, energy and sensing are presented and discussed in detail. In addition, some other perspectives and recent challenges for the synthesis of high performance and low-cost aerogels and their applications are also summarized.

14.
Vaccines (Basel) ; 9(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34960133

ABSTRACT

COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.

15.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34835861

ABSTRACT

In this study, we developed multifunctional and durable textile sensors. The fabrics were coated with metal in two steps. At first, pretreatment of fabric was performed, and then copper and silver particles were coated by the chemical reduction method. Hence, the absorbance/adherence of metal was confirmed by the deposition of particles on microfibers. The particles filled the micro spaces between the fibers and made the continuous network to facilitate the electrical conduction. Secondly, further electroplating of the metal was performed to make the compact layer on the particle- coated fabric. The fabrics were analyzed against electrical resistivity and electromagnetic shielding over the frequency range of 200 MHz to 1500 MHz. The presence of metal coating was confirmed from the surface microstructure of coated fabric samples examined by scanning electron microscopy, EDS, and XRD tests. For optimized plating parameters, the minimum surface resistivity of 67 Ω, EMI shielding of 66 dB and Ohmic heating of 118 °C at 10 V was observed. It was found that EMI SH was increased with an increase in the deposition rate of the metal. Furthermore, towards the end, the durability of conductive textiles was observed against severe washing. It was observed that even after severe washing there was an insignificant increase in electrical resistivity and good retention of the metal coating, as was also proven with SEM images.

16.
Materials (Basel) ; 14(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771959

ABSTRACT

The augmented demands of textile materials over time have brought challenges in the disposal of substantial volumes of waste generated during the processing and end of life of such materials. Taking into consideration environmental safety due to discarding of textile waste, it becomes critical to recuperate useful products from such waste for economic reasons. The present work deals with the preparation of porous and electrically conductive activated carbon fabric by a novel single stage method of simultaneous carbonization and physical activation of Kevlar feedstock material procured from local industries, for effective electromagnetic (EM) shielding applications. The Kevlar fabric waste was directly carbonized under a layer of charcoal without any intermediate stabilization step at 800 °C, 1000 °C, and 1200 °C, with a heating rate of 300 °C/h and without any holding time. The physical and morphological properties of the activated carbon, influenced by carbonization process parameters, were characterized from EDX, X-ray diffraction, SEM analysis, and BET analysis. Furthermore, the electrical conductivity was analyzed. Finally, the potential application of the activated material for EM shielding effectiveness was analyzed at low (below 1.5 GHz) and high (2.45 GHz) frequencies. The phenomena of multiple internal reflections and absorption of electromagnetic radiations was found dominant in the case of activated carbon fabric produced at higher carbonization temperatures.

17.
Nanomaterials (Basel) ; 11(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443906

ABSTRACT

In the current research, we present a single-step, one-pot, room temperature green synthesis approach for the development of functional poly(tannic acid)-based silver nanocomposites. Silver nanocomposites were synthesized using only tannic acid (plant polyphenol) as a reducing and capping agent. At room temperature and under mildly alkaline conditions, tannic acid reduces the silver salt into nanoparticles. Tannic acid undergoes oxidation and self-polymerization before the encapsulating of the synthesized silver nanoparticle and forms silver nanocomposites with a thick capping layer of poly(tannic acid). No organic solvents, special instruments, or toxic chemicals were used during the synthesis process. The results for the silver nanocomposites prepared under optimum conditions confirmed the successful synthesis of nearly spherical and fine nanocomposites (10.61 ± 1.55 nm) with a thick capping layer of poly(tannic acid) (~3 nm). With these nanocomposites, iron could be detected without any special instrument or technique. It was also demonstrated that, in the presence of Fe3+ ions (visual detection limit ~20 µM), nanocomposites aggregated using the coordination chemistry and exhibited visible color change. Ultraviolet-visible (UV-vis) and scanning electron microscopy (SEM) analysis also confirmed the formation of aggregate after the addition of the analyte in the detection system (colored nanocomposites). The unique analytic performance, simplicity, and ease of synthesis of the developed functional nanocomposites make them suitable for large-scale applications, especially in the fields of medical, sensing, and environmental monitoring. For the medical application, it is shown that synthesized nanocomposites can strongly inhibit the growth of Escherichia coli and Staphylococcus aureus. Furthermore, the particles also exhibit very good antifungal and antiviral activity.

18.
Diabetes Metab Syndr ; 15(4): 102148, 2021.
Article in English | MEDLINE | ID: mdl-34186349

ABSTRACT

BACKGROUND: Socio-demographics and comorbidities are involved in determining the severity and fatality in patients with COVID-19 suggested by studies in various countries, but study in Bangladesh is insufficient. AIMS: We designed the study to evaluate the association of sociodemographic and comorbidities with the prognosis of adverse health outcomes in patients with COVID-19 in Bangladesh. METHODS: A multivariate retrospective cohort study was conducted on data from 966 RT-PCR positive patients from eight divisions during December 13, 2020, to February 13, 2021. Variables included sociodemographic, comorbidities, symptoms, Charlson comorbidity index (CCI) and access to health facilities. Major outcome was fatality. Secondary outcomes included hospitalization, duration of hospital stay, requirement of mechanical ventilation and severity. RESULTS: Male (65.8%, 636 of 966) was predominant and mean age was 39.8 ± 12.6 years. Fever (79%), dry cough (55%), and loss of test/smell (51%) were frequent and 74% patients had >3 symptoms. Fatality was recorded in 10.5% patients. Comorbidities were found in 44% patients. Hypertension (21.5%) diabetes (14.6%), and cardiovascular diseases (11.3%) were most prevalent. Age >60 years (OR: 4.83, 95% CI: 2.45-6.49), and CCI >3 (OR: 5.48, 95% CI: 3.95-7.24) were predictors of hospitalizations. CCI >4 (aOR: 3.41, 95% CI: 2.57-6.09) was predictor of severity. Age >60 years (aOR: 3.77, 95% CI: 1.07-6.34), >3 symptoms (aOR: 2.14, 95% CI: 0.97-4.91) and CCI >3 vs. CCI <3 (aOR: 5.23, 95% CI: 3.77-8.09) were independently associated with fatality. CONCLUSIONS: Increased age, >3 symptoms, increasing comorbidities, higher CCI were associated with increased hospitalization, severity and fatality in patients with COVID-19.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/mortality , Diabetes Mellitus/mortality , Hospitalization/statistics & numerical data , Hypertension/mortality , SARS-CoV-2/isolation & purification , Adolescent , Adult , Age Factors , Aged , Bangladesh/epidemiology , COVID-19/transmission , COVID-19/virology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Child , Child, Preschool , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/pathology , Diabetes Mellitus/virology , Female , Humans , Hypertension/epidemiology , Hypertension/pathology , Hypertension/virology , Infant , Infant, Newborn , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Survival Rate , Young Adult
19.
Front Microbiol ; 12: 689979, 2021.
Article in English | MEDLINE | ID: mdl-34163459

ABSTRACT

Chikungunya virus (CHIKV) is a vector (mosquito)-transmitted alphavirus (family Togaviridae). CHIKV can cause fever and febrile illness associated with severe arthralgia and rash. Genotypic and phylogenetic analysis are important to understand the spread of CHIKV during epidemics and the diversity of circulating strains for the prediction of effective control measures. Molecular epidemiologic analysis of CHIKV is necessary to understand the complex interaction of vectors, hosts and environment that influences the genotypic evolution of epidemic strains. In this study, different works published during 1950s to 2020 concerning CHIKV evolution, epidemiology, vectors, phylogeny, and clinical outcomes were analyzed. Outbreaks of CHIKV have been reported from Bangladesh, Bhutan, India, Pakistan, Sri Lanka, Nepal, and Maldives in South Asia during 2007-2020. Three lineages- Asian, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL) are circulating in South Asia. Lineage, ECSA and IOL became predominant over Asian lineage in South Asian countries during 2011-2020 epidemics. Further, the mutant E1-A226V is circulating in abundance with Aedes albopictus in India, Bangladesh, Nepal, and Bhutan. CHIKV is underestimated as clinical symptoms of CHIKV infection merges with the symptoms of dengue fever in South Asia. Failure to inhibit vector mediated transmission and predict epidemics of CHIKV increase the risk of larger global epidemics in future. To understand geographical spread of CHIKV, most of the studies focused on CHIKV outbreak, biology, pathogenesis, infection, transmission, and treatment. This updated study will reveal the collective epidemiology, evolution and phylogenies of CHIKV, supporting the necessity to investigate the circulating strains and vectors in South Asia.

20.
Diabetes Metab Syndr ; 15(3): 1009-1016, 2021.
Article in English | MEDLINE | ID: mdl-33993046

ABSTRACT

BACKGROUND: Patients with coronavirus disease-2019 (COVID-19) with preexisting diabetes and cardiovascular metabolic diseases have higher fatality rate. The circulation of new variants with emerging clinical characteristics requires more studies focusing the impact of preexisting health conditions on outcome of COVID-19 accurately. AIMS: Main aim of this study was to investigate the impact of diabetes and cardiovascular disease (CVD) on disease prognosis and severe health outcomes among patients with COVID-19. METHODS: A retrospective study was performed on 799 patients with COVID-19 during December 10, 2020, to February 10, 2020 in Bangladesh. Logistic regression analysis was performed for age, sex, diabetes, CVD and symptoms on fatality. Kaplan-Meier survival analysis was conducted to predict the survival rate. RESULTS: Fatality was detected in 40% (318 of 799) patients with COVID-19. Among 318 fatalities, 90.6% were detected in patients with CVD and 74.5% in patients with diabetes. Case fatality rate was highest in patients with COVID-19, CVD and diabetes (94, 184 of 195). Fever (91%) and dry cough (71%) were the most frequent symptoms. CVD (42.2%), diabetes (32.7%) and obesity (18%) were prevalent. The highest odds of risk was detected in patients with COVID-19, CVD and diabetes (OR: 6.98, 95% CI, 4.21 to 7.34). Female patients had the highest survival rate. CONCLUSIONS: In this study, 318 fatality was seen in 799 patients with COVID-19. The highest odds of fatality risk was detected in patients with COVID-19, CVD and diabetes. The risk increased many folds when CVD and diabetes coexisted in patients.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Diabetes Mellitus/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Bangladesh/epidemiology , COVID-19/complications , Cardiovascular Diseases/complications , Cardiovascular Diseases/diagnosis , Child , Child, Preschool , Comorbidity , Diabetes Complications/diagnosis , Diabetes Complications/epidemiology , Diabetes Mellitus/diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mortality , Prevalence , Prognosis , Retrospective Studies , SARS-CoV-2/physiology , Socioeconomic Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...