Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Med Sci ; 21(6): 1165-1175, 2024.
Article in English | MEDLINE | ID: mdl-38774756

ABSTRACT

Oral cancer is the most heterogeneous cancer at clinical and histological levels. PI3K/AKT/mTOR pathway was identified as one of the most commonly modulated signals in oral cancer, which regulates major cellular and metabolic activity of the cell. Thus, various proteins of PI3K/AKT/mTOR pathway were used as therapeutic targets for oral cancer, to design more specific drugs with less off-target toxicity. This review sheds light on the regulation of PI3K/AKT/mTOR, and its role in controlling autophagy and associated apoptosis during the progression and metastasis of oral squamous type of malignancy (OSCC). In addition, we reviewed in detail the upstream activators and the downstream effectors of PI3K/AKT/mTOR signaling as potential therapeutic targets for oral cancer treatment.


Subject(s)
Autophagy , Mouth Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Autophagy/physiology , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics
2.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38571915

ABSTRACT

Background: Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods: The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results: Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-ß (Wnt-ß)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-ß), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion: The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.

3.
Noncoding RNA Res ; 9(2): 602-611, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532798

ABSTRACT

Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.

4.
Aging (Albany NY) ; 16(6): 5000-5026, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38517361

ABSTRACT

D-galactose (D-gal) administration was proven to induce cognitive impairment and aging in rodents' models. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes. GNL reduces inflammation by changing important signaling pathways and cytokines, and thus it is plausible to be used as a medicine for treating disorders linked to inflammation. Herein, we examined the therapeutic effects of GNL on D-gal-induced oxidative stress and neuroinflammation-mediated memory loss in mice. The study was conducted using six groups of mice (6 mice per group). The first group received normal saline, then D-gal (150 mg/wt) dissolved in normal saline solution (0.9%, w/v) was given orally for 9 weeks to the second group. In the III group, from the second week until the 10th week, mice were treated orally (without anesthesia) with D-gal (150 mg/kg body wt) and GNL weekly twice (40 mg/kg body wt) four hours later. Mice in Group IV were treated with GNL from the second week up until the end of the experiment. For comparison of young versus elderly mice, 4 month old (Group V) and 16-month-old (Group VI) control mice were used. We evaluated the changes in antioxidant levels, PI3K/Akt levels, and Nrf2 levels. We also examined how D-gal and GNL treated pathological aging changes. Administration of GNL induced a significant increase in spatial learning and memory with spontaneously altered behavior. Enhancing anti-oxidant and anti-inflammatory effects and activating PI3K/Akt were the mechanisms that mediated this effect. Further, GNL treatment upregulated Nrf2 and HO-1 to reduce oxidative stress and apoptosis. This was confirmed using 99mTc-HMPAO brain flow gamma bioassays. Thus, our data suggested GNL as a promising agent for treating neuroinflammation-induced cognitive impairment.


Subject(s)
Acyclic Monoterpenes , Cognitive Dysfunction , Galactose , Humans , Mice , Animals , Galactose/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Neuroinflammatory Diseases , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress , Aging/metabolism , Cognitive Dysfunction/drug therapy , Antioxidants/pharmacology , Disease Models, Animal , Inflammation/drug therapy
5.
Noncoding RNA Res ; 8(3): 376-384, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37250455

ABSTRACT

Oral cancer is the most debilitating disease which affects the orderly life of a human. With so much advancement in research and technology, the average life expectancy of an individual with oral cancer appears to be about 5 years. The changing trend in incidence of oral cancer among young individuals and women without tobacco habits are ascending. Non habit related oral cancer are taking centre stage and multiple factors which induce complex biology are associated in such scenarios. To decipher the aetiology and to understand the process, these cancerous conditions are to be studied at molecular level. Saliva, the most non-invasively obtained body fluid are assessed for biomarkers exclusively in liquid biopsy. This fluid gives a huge platform to study number of molecules associated with oral cancer. Non coding RNAs are transcripts with no protein coding function. They are gaining more importance in recent times. Long noncoding RNA, microRNA are major types of noncoding transcriptome that influences in progression of oral cancer. They seem to play an important role in health and disease. Apart from these, circulating tumour cells, exosomes, extracellular vesicles, antigens and other proteins can be studied from saliva. This review is aimed to update the knowledge on current biomarkers in saliva associated with oral cancer and their epigenetic role in disease progression as well recent advances in detecting these markers to identify the stage of the disease, which will help in deciding the treatment protocol.

6.
Nutrients ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904106

ABSTRACT

Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Polyphenols/pharmacology , Neuroprotection , Stroke/metabolism , Oxidative Stress , Ischemia
7.
Molecules ; 28(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36838531

ABSTRACT

Trichophyton rubrum is the most common dermatophyte, and can cause cutaneous infections in humans and animals (dermatophytosis). In this study, we investigated the anti-dermatophytic potential of green synthesized silver nanoparticles using Achillea santolina extract (AS-AgNPs) in an in vitro and in vivo rat model of dermal T. rubrum dermatophytosis (TRD). The green synthesis of AS-AgNPs was performed using A. santolina extract and characterized by UV-VIS spectroscopy, zeta potential, imaging (transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive X-ray analysis (EDX). The antifungal activity of AS-AgNPs was determined by the broth microdilution method, conidial germination, and hyphal growth inhibition. TEM and SEM were used to study the mode of the antifungal action of AS-AgNPs. AS-AgNPs inhibited the growth of T. rubrum with an MIC of 128 µg/mL, and suppressed the conidial germination and hyphal growth by 55.3% 84.6%, respectively. AS-AgNPs caused modified mycelial structures, increased cell membrane permeability, and cell wall damage. AS-AgNPs significantly increase the permeability of the fungal membrane, as revealed by reducing ergosterol biosynthesis. An increase in the intracellular ROS and the induction of apoptosis were also observed during AS-AgNP treatment. In addition, AS-AgNPs reduced the cell wall integrity, as shown by the reduction in the ß-(1,3)-d-glucan synthase and chitin synthase activities. AS-AgNPs showed very low toxicity on primary human dermal fibroblasts (HDF) at the MIC. The topical treatment of the infected skin in the TRD rat model with AS-AgNPs showed a significant reduction in the fugal burden after 7 days and a complete clearance of fungal conidia, with a high recovery of epidermal and dermal structures after 14 days, compared to control rats. Interestingly, AS-AgNPs significantly attenuated the infiltrated inflammatory cells, in association with reducing the tissue proinflammatory cytokines including TNF-α, IL-1, IL-6, MOP and IL-17. In conclusion, our data prove AS-AgNPs to be a novel green topical therapy for dermatophytosis caused by T. rubrum.


Subject(s)
Achillea , Arthrodermataceae , Metal Nanoparticles , Tinea , Rats , Humans , Animals , Antifungal Agents/pharmacology , Metal Nanoparticles/chemistry , Silver/chemistry , Plant Extracts/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
8.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807474

ABSTRACT

Oral candidiasis (OC) is a fungal infection caused by an opportunistic fungi Candida albicans, which is found in the normal flora of healthy people. In this study, we examined the anti-candidal effect of green synthesized silver nanoparticles using leaf extract of Erodium glaucophyllum (EG-AgNPs) against C. albicans in vitro and in vivo. EG-AgNPs were synthesized for the first time using E. glaucophyllum extract and characterized by imaging (transmission electron microscopy (TEM), UV-VIS spectroscopy, zeta potential, X-ray diffraction (XRD), Energy dispersive x-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). A mouse model of OC was used for in vivo study. The agar well diffusion method showed the anti-candidal activity of EG-AgNPs against C. albicans with MIC 50 µg/mL. EG-AgNPs inhibited the dimorphic transition of C. albicans and suppressed the formation of biofilm by 56.36% and 52%, respectively. Additionally, EG-AgNPs significantly inhibited the production of phospholipases and proteinases by 30% and 45%, respectively. EG-AgNPs cause cytoplasm disintegration and deterioration of cell wall as imaged by SEM and TEM. Interestingly, EG-AgNPs did not display any cytotoxicity on the human gingival fibroblast-1 HGF-1 cell line at MIC concentrations. Topical treatment of the tongue of the OC mouse model with EG-AgNPs showed significant reduction in candidal tissue invasion, less inflammatory changes, and no tissue modification, in association with marked low scare and hyphal counts as compared to control group. In conclusion, our data demonstrated the potent inhibitory action of EG-AgNPs on the growth and morphogenesis of C. albicans in vitro and in vivo. Thus, EG-AgNPs represent a novel plausible therapeutic approach for treatment of OC.


Subject(s)
Candidiasis, Oral , Metal Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Candida/metabolism , Candida albicans , Candidiasis, Oral/drug therapy , Humans , Metal Nanoparticles/chemistry , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
J Fungi (Basel) ; 8(5)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35628698

ABSTRACT

Gold nanoparticles are widely used in the biomedical field for the treatment of several diseases, including cancer, inflammatory diseases, and immune system disorders, due to their distinctive physicochemical characteristics. In this study, we investigated the therapeutic potential of green synthesized gold nanoparticles using ethanolic leaf extract of Leptadenia hastata (LH-AuNPs) against invasive pulmonary aspergillosis (IPA) in mice. UV/visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and zeta potential were used to characterize the biofabricated LH-AuNPs. Antifungal activity of LH-AuNPs was determined by MTT assay, (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), time-kill assay, and radial growth inhibition. TEM and SEM were used to examine the mode of the antifungal action of LH-AuNPs. The in vivo activity of LH-AuNPs against IPA was studied using a well-established IPA mouse model. LH-AuNPs excreted antifungal activity against Aspergillus fumigatus with MIC 64 µg/mL and inhibited the radial growth of A. fumigatus by 30% compared to the control. LH-AuNPs caused distortion and collapse of fungal hyphae and deterioration of cell walls. Interestingly, LH-AuNPs did not display any cytotoxicity on cultured primary bone marrow stem cells (BMSCs) or A549 human lung cell line in vitro at MIC concentration. IPA mice treated with LH-AuNPs displayed significant lung tissue repair without any in vivo cytotoxicity. LH-AuNPs administration showed significant suppression of fungal burden and gliotoxin production in the lung. In addition, LH-AuNPs inhibited IPA-induced pro-inflammatory cytokines production, including interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α), and reduced oxidative stress in lung. In conclusion, our data provide LH-AuNPs as a novel nanoparticle therapy for IPA.

10.
ACS Omega ; 6(12): 8151-8162, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33817474

ABSTRACT

Oral candidiasis is widely spread in both humans and animals, which is caused mainly by Candida albicans. In this study, we aimed to biosynthesize silver nanoparticles (AgNPs) for the first time using the Lotus lalambensis Schweinf leaf extract (L-AgNPs) and investigated their anti-candidal potency alone or in combination with the leaf extract of L. lalambensis (L-AgNPs/LL) against C. albicans. The biosynthesized L-AgNPs were characterized by imaging (transmission electron microscopy, TEM), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results of the disk diffusion method showed the potent synergistic anti-candidal activity of L-AgNPs/LL (24 mm inhibition zone). L-AgNPs/LL completely inhibited the morphogenesis of C. albicans and suppressed the adhesion and the formation of the biofilm of C. albicans by 82.5 and 78.7%, respectively. Further, L-AgNPs/LL inhibited the production of antioxidant enzymes of C. albicans by 80%. SEM and TEM revealed deteriorations in the cell wall ultrastructure in L-AgNPs/LL-treated C. albicans. Interestingly, L-AgNPs/LL showed less than 5% cytotoxicity when examined with either the primary bone marrow derived mesenchymal stem cell (BMSCs) or MCF-7 cell line at MIC values of L-AgNPs/LL. In conclusion, we identified L-AgNPs/LL as a potential biosynthesized-based drug for oral candidiasis in humans and animals.

11.
Environ Pollut ; 277: 116715, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33652183

ABSTRACT

Herbs and spices are food crops susceptible to contamination by toxigenic fungi. Ozone, as a decontamination approach in the industry, has attractive benefits over traditional food preservation practices. A contribution to the studying of ozone as an antifungal and anti-mycotoxigenic agent in herbs and spices storage processes is achieved in this research. Nine powdered sun-dried herbs and spices were analyzed for their fungal contamination. The results indicate that licorice root and peppermint leaves were found to have the highest population of fungi while black cumin and fennel record the lowest population. The most dominant fungal genera are Aspergillus, Penicillium, Fusarium, and Rhizopus. Ozone treatment was performed at a concentration of 3 ppm applied for exposure times of 0, 30, 90, 150, 210, and 280 min. After 280 min of exposure to ozone, the reduction of fungal count ranged from 96.39 to 98.26%. The maximum reduction in spore production was achieved in the case of A. humicola and Trichderma viride exposed for 210 min ozone gas. There was a remarkable reduction in the production of the total mycotoxin, reaching 24.15% in aflatoxins for the 150 min-treated inoculum in the case of A. flavus. The total volume of essential oil of chamomile and peppermint was reduced by 57.14 and 26.67%, respectively, when exposed to 3 ppm. For 280 min. In conclusion, fumigation with ozone gas can be used as a suitable method for achieving sanitation and decreasing microbial load in herbs and spices. Still, it is crucial to provide precautions on ozone's effect on major active constituents before recommending this method for industrial application.


Subject(s)
Aflatoxins , Mycotoxins , Ozone , Aflatoxins/analysis , Food Contamination/analysis , Spices/analysis
12.
Nanomaterials (Basel) ; 12(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35010001

ABSTRACT

Aspergillus fumigatus is one of the most common fungal pathogens that can cause a diversity of diseases ranging from invasive pulmonary aspergillosis (IPA) and aspergilloma to allergic syndromes. In this study, we investigated the antifungal effect of silver nanoparticles biosynthesized with Artemisia sieberi leaf extract (AS-AgNPs) against A. fumigatus in vitro and in vivo. The biosynthesized AS-AgNPs were characterized by imaging (transmission electron microscopy (TEM)), UV-VIS spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The microdilution method showed the antifungal activity of AS-AgNPs against A. fumigatus, with an MIC of 128 µg/mL. AS-AgNPs significantly inhibited the growth of hyphae in all directions, as imaged by SEM. Additionally, TEM on biofilm revealed invaginations of the cell membrane, a change in the vacuolar system, and the presence of multilamellar bodies within vacuoles. Interestingly, AS-AgNPs displayed low cytotoxicity on the A549 human lung cell line in vitro. Treatment of an invasive pulmonary aspergillosis (IPA) mouse model with AS-AgNPs demonstrated the potency of AS-AgNPs to significantly reduce lung tissue damage and to suppress the elevated levels of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-17 (IL-17). The therapeutic potential of AS-AgNPs was found to be due to their direct action to suppress the fungal burden and gliotoxin production in the lungs. In addition, AS-AgNPs reduced the oxidative stress in the lungs by increasing the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Thus, our data indicate the biosynthesized AS-AgNPs as a novel antifungal alternative treatment against aspergillosis.

13.
Antibiotics (Basel) ; 9(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365587

ABSTRACT

The burden of antibiotic resistance necessitates a continued search for new antimicrobials. We evaluated the antimicrobial activities of novel benzothiazoles synthesized by our group. Antibacterial activity was evaluated in vitro in Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, while the antifungal activity was tested in Candida albicans and Aspergillus niger, and expressed as the minimum inhibitory concentration (MIC; µg/mL). MIC values of benzothiazole compounds ranged from 25 to 200 µg/mL. Compounds 3 and 4 gave high antibacterial and moderate antifungal activities, while 10 and 12 showed moderate activity against all tested organisms. In addition, some benzothiazole compounds significantly suppressed the activity of Escherichia coli dihydroorotase and inhibited the dimorphic transition of Candida albicans. Moreover, the active benzothiazole compounds induced DNA and protein leakage in Aspergillus niger spores. Molecular interactions of benzothiazole derivatives with dihydroorotase revealed the formation of hydrogen bonds with the active site residues LEU222 or ASN44. Strong hydrophobic interactions of the bulky thiazole and naphthalene rings at the entrance to the active site might interfere with the access of substrates to their binding sites, which results in dihydroorotase inhibition. Thus, inhibition of dihydroorotase might contribute to the observed antimicrobial actions of these compounds.

14.
Molecules ; 25(8)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325749

ABSTRACT

Butein is a phytochemical that belongs to the chalcone family of flavonoids and has antitumor, anti-inflammatory, and anti-osteoclastic bone resorption activities. This study aims to investigate the effects of butein on the differentiation potential of mouse primary bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblast and adipocyte lineages. Primary cultures of mBMSCs are treated with different doses of butein during its differentiation. Osteoblast differentiation is assessed by alkaline phosphatase (ALP) activity quantification and Alizarin red staining for matrix mineralization, while adipogenesis is assessed by quantification of lipid accumulation using Oil Red O staining. Osteoblastic and adipocytic gene expression markers are determined by quantitative real-time PCR (qPCR). Western blot analysis is used to study the activation of extracellular signal-regulated kinase (ERK1/2). Interestingly, butein promotes the lineage commitment of mBMSCs into osteoblasts, while suppressing their differentiation into adipocytes in a dose-dependent manner. A similar effect of butein is confirmed in human (h) primary BMSCs. Occurring at the molecular level, butein significantly upregulates the mRNA expression of osteoblast-related genes, while downregulating the expression of adipocyte-related genes. The mechanism of butein-induced osteogenesis is found to be mediated by activating the ERK1/2 signaling pathway. To conclude, we identify butein as a novel nutraceutical compound with an osteo-anabolic activity to promote the lineage commitment of BMSCs into osteoblast versus adipocyte. Thus, butein can be a plausible therapeutic drug for enhancing bone formation in osteoporotic patients.


Subject(s)
Chalcones/pharmacology , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , RNA, Messenger/genetics
15.
Nanomaterials (Basel) ; 10(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121137

ABSTRACT

The approaches used for the green biosynthesis of nanoparticles with clinical applications have been widely used in nanotechnology due to their potential to provide safe, eco-friendly, cost effective, high-stability, and high-loading-capacity nanoparticles. This study aimed to evaluate the anti-candidal activity of silver nanoparticles (AgNPs) biosynthesized using the aqueous leaf extract of Calotropis gigantea (CG) alone or in a combination with the plant extract of CG (AgNPs/CG). AgNPs were characterized using UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results of the standard disk diffusion method revealed that AgNPs alone displayed anti-candidal activity (11.33-mm inhibition zone), while AgNPs/CG displayed a strong synergistic anti-candidal activity (17.76-mm inhibition zone). Similarly, AgNPs/CG completely inhibited the growth of C. albicans after 4 h of incubation, as measured using the time-kill assay. In addition, AgNPs/CG inhibited the dimorphic transition of C. albicans and suppressed both the adhesion and the biofilm formation of C. albicans by 41% and 38%, respectively. The treatment of Candida. albicans with AgNPs/CG showed a significant inhibition of the production of several antioxidant enzymes. Interestingly, AgNPs/CG did not show any cytotoxicity in animal cells, including the MCF-7 cell line and primary mouse bone marrow-derived mesenchymal stem cells (mBMSCs), at the concentration used to completely inhibit the dimorphic transition of C. albicans. In conclusion, we identified AgNPs/CG as a promising natural-product-based nanoparticle that can potentially be used as an anti-candidal drug.

16.
J Biomed Sci ; 26(1): 51, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31277646

ABSTRACT

BACKGROUND: Identifying bone anabolic agents is a superior strategy for the treatment of osteoporosis. Naturally, derived coumarin derivatives have shown osteoanabolic effect in vitro and in vivo. In this study, we investigated the effect of 5'-Hydroxy Auraptene (5'-HA), a coumarin derivative that newly isolated from Lotus lalambensis Schweinf on the differentiation of the mouse bone marrow-derived mesenchymal (skeletal) stem cells (mBMSCs) into osteoblast and adipocyte. METHODS: The effect of 5'-HA on mBMSCs cell proliferation and osteoblast differentiation was assessed by measuring cell viability, quantitative alkaline phosphatase (ALP) activity assay, Alizarin red staining for matrix mineralization and osteogenic gene array expression. Adipogenesis was measured by Oil Red O staining and quantitative real time PCR (qPCR) analysis of adipogenic markers. Regulation of BMPs signaling pathways by 5'-HA was measured by Western blot analysis and qPCR. RESULTS: 5'-HA showed to stimulate the differentiation of mBMSCs into osteogenic cell lineage in a dose-dependent manner, without affecting their differentiation into adipocytic cell lineage. Treatment of mBMSCs with 5'-HA showed to promote significantly the BMP2-induced osteogenesis in mBMSCs via activating Smad1/5/8 phosphorylation and increasing Smad4 expression. Blocking of BMP signaling using BMPR1 selective inhibitor LDN-193189 significantly inhibited the stimulatory effect of 5'-HA on osteogenesis. CONCLUSIONS: Our data identified 5'-HA, as a novel coumarin derivative that function to stimulate the differentiation of mBMSCs into osteoblasts in BMP-signaling dependent mechanism.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Morphogenetic Protein 2/genetics , Coumarins/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Animals , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Dose-Response Relationship, Drug , Humans , Lotus/chemistry , Male , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Osteoblasts/drug effects , Osteoblasts/metabolism , Signal Transduction
17.
Biomed Res Int ; 2019: 9395146, 2019.
Article in English | MEDLINE | ID: mdl-31976330

ABSTRACT

The phytochemical substances, coumarin derivatives, have demonstrated antiresorptive bone effects by suppressing osteoclast differentiation in vitro and in vivo. Recently, we have identified 5'-hydroxy auraptene (5'-HA), a coumarin derivative isolated from Lotus lalambensis Schweinf, as a novel stimulator for osteoblast differentiation. In this study, we investigated the effect of 5'-HA on osteoclast differentiation of mouse bone marrow (BM) cells. The effect of 5'-HA on BM cell proliferation and osteoclast differentiation was determined by measuring cell viability and tartrate-resistant acid phosphatase (TRAP) enzyme activity, quantification of TRAP+ multinucleated cells (TRAP+MNCs), and quantitative real-time PCR (qPCR) of osteoclastic gene expression. Regulation of NF-κB, c-Fos/NFATc1, and MAPK signaling pathways by 5'-HA during osteoclastogenesis was measured by the NF-κB reporter assay and Western blot analysis. 5'-HA significantly suppresses the receptor activator of NF-κB ligand (RANKL) induced osteoclast differentiation of BM cells in a dose-dependent manner. Consistently, treatment of BM cells with 5'-HA significantly inhibited RANKL-induced activation of NF-κB and c-Fos/NFATc1 pathways in a dose-dependent manner. Furthermore, RANKL-induced phosphorylation of ERK1/2, p-38, and JNK was significantly inhibited by 5'-HA in BM cells. In conclusion, we identified 5'-HA as a novel coumarin derivative that suppresses RANKL-induced osteoclastogenesis via inhibiting c-Fos/NFATc1 and MAPK signaling pathways.


Subject(s)
Cell Differentiation/drug effects , Coumarins/pharmacology , NFATC Transcription Factors/metabolism , Osteoclasts/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression , Lotus/chemistry , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/drug effects , NF-kappa B/metabolism , Osteoclasts/metabolism , Osteogenesis/drug effects , Plant Extracts/pharmacology , RANK Ligand/drug effects , RANK Ligand/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects
18.
Article in English | MEDLINE | ID: mdl-25371577

ABSTRACT

BACKGROUND: There is a great need for novel strategies to overcome the high mortality associated with invasive pulmonary aspergillosis (IPA) in immunocompromised patients. To evaluate the antifungal and antihepatotoxic potentials of Sepia ink extract, its effect on liver oxidative stress levels was analyzed against IPA in neutropenic mice using amphotercin B as a reference drug. MATERIALS AND METHODS: Eighty neutropenic infected mice were randomly assigned into four main groups. The 1(st) group was treated with saline, neutropenic infected (NI), the 2(nd) group was treated with ink extract (200 mg/kg) (IE) and the 3(rd) group was treated with amphotericin B (150 mg/kg) (AMB) and 4(th) group was treated with IE plus AMB. Treatment was started at 24 h after fungal inoculation (1×10(9) conidia/ml). RESULTS: The present study revealed good in vitro and in vivo antifungal activity of IE against A. fumigatus. IE significantly reduced hepatic fungal burden and returns liver function and histology to normal levels. Compared with the untreated infected group, mice in the IE, AMB, and IE+ AMB groups had increased glutathione reduced (GSH) and superoxide dismutase (SOD) and significantly reduced malondialdehyde (MDA) levels at 24 and 72 h after inoculation with A. fumigatus conidia. CONCLUSION: It is then concluded that in combination with antifungal therapy (AMB), IE treatment can reduce hepatic fungal burden, alleviate hepatic granulomatous lesions and oxidative stress associated with IPA in neutropenic mice.


Subject(s)
Antifungal Agents/administration & dosage , Invasive Pulmonary Aspergillosis/drug therapy , Liver/drug effects , Neutropenia/complications , Pigments, Biological/administration & dosage , Sepia/chemistry , Amphotericin B/administration & dosage , Animals , Aspergillus fumigatus/drug effects , Glutathione/metabolism , Humans , Invasive Pulmonary Aspergillosis/etiology , Invasive Pulmonary Aspergillosis/metabolism , Invasive Pulmonary Aspergillosis/microbiology , Liver/metabolism , Liver/microbiology , Male , Malondialdehyde/metabolism , Mice , Oxidative Stress/drug effects , Pigments, Biological/metabolism , Sepia/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...