Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
NPJ Digit Med ; 6(1): 81, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120493

ABSTRACT

Major depressive disorder (MDD) is associated with circadian rhythm disruption. Yet, no circadian rhythm biomarkers have been clinically validated for assessing antidepressant response. In this study, 40 participants with MDD provided actigraphy data using wearable devices for one week after initiating antidepressant treatment in a randomized, double-blind, placebo-controlled trial. Their depression severity was calculated pretreatment, after one week and eight weeks of treatment. This study assesses the relationship between parametric and nonparametric measures of circadian rhythm and change in depression. Results show significant association between a lower circadian quotient (reflecting less robust rhythmicity) and improvement in depression from baseline following first week of treatment (estimate = 0.11, F = 7.01, P = 0.01). There is insufficient evidence of an association between circadian rhythm measures acquired during the first week of treatment and outcomes after eight weeks of treatment. Despite this lack of association with future treatment outcome, this scalable, cost-effective biomarker may be useful for timely mental health care through remote monitoring of real-time changes in current depression.

2.
Neurosci Inform ; 2(4)2022 Dec.
Article in English | MEDLINE | ID: mdl-36699194

ABSTRACT

Introduction: Pretreatment positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and magnetic resonance spectroscopy (MRS) may identify biomarkers for predicting remission (absence of depression). Yet, no such image-based biomarkers have achieved clinical validity. The purpose of this study was to identify biomarkers of remission using machine learning (ML) with pretreatment FDG-PET/MRS neuroimaging, to reduce patient suffering and economic burden from ineffective trials. Methods: This study used simultaneous PET/MRS neuroimaging from a double-blind, placebo-controlled, randomized antidepressant trial on 60 participants with major depressive disorder (MDD) before initiating treatment. After eight weeks of treatment, those with ≤ 7 on 17-item Hamilton Depression Rating Scale were designated a priori as remitters (free of depression, 37%). Metabolic rate of glucose uptake (metabolism) from 22 brain regions were acquired from PET. Concentrations (mM) of glutamine and glutamate and gamma-aminobutyric acid (GABA) in anterior cingulate cortex were quantified from MRS. The data were randomly split into 67% train and cross-validation (n = 40), and 33% test (n = 20) sets. The imaging features, along with age, sex, handedness, and treatment assignment (selective serotonin reuptake inhibitor or SSRI vs. placebo) were entered into the eXtreme Gradient Boosting (XGBoost) classifier for training. Results: In test data, the model showed 62% sensitivity, 92% specificity, and 77% weighted accuracy. Pretreatment metabolism of left hippocampus from PET was the most predictive of remission. Conclusions: The pretreatment neuroimaging takes around 60 minutes but has potential to prevent weeks of failed treatment trials. This study effectively addresses common issues for neuroimaging analysis, such as small sample size, high dimensionality, and class imbalance.

SELECTION OF CITATIONS
SEARCH DETAIL