Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Article in English | MEDLINE | ID: mdl-38110242

ABSTRACT

Spatial findings have shaped on our understanding of breast cancer. In this review, we discuss how spatial methods, including spatial transcriptomics and proteomics and the resultant understanding of spatial relationships, have contributed to concepts regarding cancer progression and treatment. In addition to discussing traditional approaches, we examine how emerging multiplex imaging technologies have contributed to the field and how they might influence future research.


Subject(s)
Breast Neoplasms , Proteomics , Humans , Breast Neoplasms/genetics , Female , Transcriptome , Disease Progression
2.
Nat Genet ; 56(1): 14-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38135722
3.
Eur J Cancer ; 195: 113379, 2023 12.
Article in English | MEDLINE | ID: mdl-37913680

ABSTRACT

BACKGROUND: Antibody-drug conjugates (ADCs) are a rapidly expanding class of compounds in oncology. Our goal was to assess the expression of ADC targets and potential downstream determining factors of activity across pan-cancer and normal tissues. MATERIALS AND METHODS: ADCs in clinical trials (n = 121) were identified through ClinicalTrials.gov, corresponding to 54 targets. Genes potentially implicated in treatment response were identified in the literature. Gene expression from The Cancer Genome Atlas (9000+ cancers of 31 cancer types), the Genotype-Tissue Expression database (n = 19,000 samples from 31 normal tissue types), and the TNMplot.com (n = 12,494 unmatched primary and metastatic samples) were used in this analysis. To compare relative expression across and within tumour types we used pooled normal tissues as reference. RESULTS: For most ADC targets, mRNA levels correlated with protein expression. Pan-cancer target expression distributions identified appealing cancer types for each ADC development. Co-expression of multiple targets was common and suggested opportunities for ADC combinations. Expression levels of genes potentially implicated in ADC response downstream of the target might provide additional information (e.g. TOP1 was highly expressed in many tumour types, including breast and lung cancers). Metastatic compared to primary tissues overexpressed some ADCs targets. Single sample "targetgram" plots were generated to visualise the expression of potentially competing ADC targets and resistance/sensitivity markers highlighting high inter-patient heterogeneity. Off-cancer target expression only partially explains adverse events, while expression of determinants of payload activity explained more of the observed toxicities. CONCLUSION: Our findings draw attention to new therapeutic opportunities for ADCs that can be tested in the clinic and our web platform (https://tnmplot.com) can assist in prioritising upcoming ADC targets for clinical development.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Lung Neoplasms , Humans , Immunoconjugates/therapeutic use , Antineoplastic Agents/therapeutic use , Lung Neoplasms/drug therapy
4.
Nature ; 621(7980): 868-876, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674077

ABSTRACT

Immune checkpoint blockade (ICB) benefits some patients with triple-negative breast cancer, but what distinguishes responders from non-responders is unclear1. Because ICB targets cell-cell interactions2, we investigated the impact of multicellular spatial organization on response, and explored how ICB remodels the tumour microenvironment. We show that cell phenotype, activation state and spatial location are intimately linked, influence ICB effect and differ in sensitive versus resistant tumours early on-treatment. We used imaging mass cytometry3 to profile the in situ expression of 43 proteins in tumours from patients in a randomized trial of neoadjuvant ICB, sampled at three timepoints (baseline, n = 243; early on-treatment, n = 207; post-treatment, n = 210). Multivariate modelling showed that the fractions of proliferating CD8+TCF1+T cells and MHCII+ cancer cells were dominant predictors of response, followed by cancer-immune interactions with B cells and granzyme B+ T cells. On-treatment, responsive tumours contained abundant granzyme B+ T cells, whereas resistant tumours were characterized by CD15+ cancer cells. Response was best predicted by combining tissue features before and on-treatment, pointing to a role for early biopsies in guiding adaptive therapy. Our findings show that multicellular spatial organization is a major determinant of ICB effect and suggest that its systematic enumeration in situ could help realize precision immuno-oncology.


Subject(s)
Immunotherapy , T-Lymphocytes , Triple Negative Breast Neoplasms , Humans , B-Lymphocytes/immunology , Biopsy , CD8-Positive T-Lymphocytes/immunology , Granzymes/metabolism , Histocompatibility Antigens Class II/immunology , Lewis X Antigen/metabolism , Neoadjuvant Therapy , Precision Medicine , Prognosis , Randomized Controlled Trials as Topic , T-Lymphocytes/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy
5.
Nat Genet ; 54(5): 660-669, 2022 05.
Article in English | MEDLINE | ID: mdl-35437329

ABSTRACT

The functions of the tumor microenvironment (TME) are orchestrated by precise spatial organization of specialized cells, yet little is known about the multicellular structures that form within the TME. Here we systematically mapped TME structures in situ using imaging mass cytometry and multitiered spatial analysis of 693 breast tumors linked to genomic and clinical data. We identified ten recurrent TME structures that varied by vascular content, stromal quiescence versus activation, and leukocyte composition. These TME structures had distinct enrichment patterns among breast cancer subtypes, and some were associated with genomic profiles indicative of immune escape. Regulatory and dysfunctional T cells co-occurred in large 'suppressed expansion' structures. These structures were characterized by high cellular diversity, proliferating cells and enrichment for BRCA1 and CASP8 mutations and predicted poor outcome in estrogen-receptor-positive disease. The multicellular structures revealed here link conserved spatial organization to local TME function and could improve patient stratification.


Subject(s)
Breast Neoplasms , Tumor Microenvironment , Breast Neoplasms/pathology , Female , Genome , Genomics , Humans , Tumor Microenvironment/genetics
6.
Nat Commun ; 12(1): 5406, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34518533

ABSTRACT

DNA methylation is aberrant in cancer, but the dynamics, regulatory role and clinical implications of such epigenetic changes are still poorly understood. Here, reduced representation bisulfite sequencing (RRBS) profiles of 1538 breast tumors and 244 normal breast tissues from the METABRIC cohort are reported, facilitating detailed analysis of DNA methylation within a rich context of genomic, transcriptional, and clinical data. Tumor methylation from immune and stromal signatures are deconvoluted leading to the discovery of a tumor replication-linked clock with genome-wide methylation loss in non-CpG island sites. Unexpectedly, methylation in most tumor CpG islands follows two replication-independent processes of gain (MG) or loss (ML) that we term epigenomic instability. Epigenomic instability is correlated with tumor grade and stage, TP53 mutations and poorer prognosis. After controlling for these global trans-acting trends, as well as for X-linked dosage compensation effects, cis-specific methylation and expression correlations are uncovered at hundreds of promoters and over a thousand distal elements. Some of these targeted known tumor suppressors and oncogenes. In conclusion, this study demonstrates that global epigenetic instability can erode cancer methylomes and expose them to localized methylation aberrations in-cis resulting in transcriptional changes seen in tumors.


Subject(s)
Breast Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Epigenomics/methods , Gene Expression Regulation, Neoplastic , Cohort Studies , CpG Islands/genetics , DNA Replication/genetics , Female , Genome, Human/genetics , Genomic Instability/genetics , Genomics/methods , Humans , MCF-7 Cells , Mutation , Promoter Regions, Genetic/genetics , Survival Analysis
7.
Nat Commun ; 12(1): 1998, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790302

ABSTRACT

The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.


Subject(s)
Benzamides/pharmacology , Breast Neoplasms/drug therapy , Heterografts/drug effects , Morpholines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays/methods , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Heterografts/metabolism , Humans , MCF-7 Cells , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Protein Kinase Inhibitors/pharmacology , Treatment Outcome
8.
Nature ; 578(7796): 615-620, 2020 02.
Article in English | MEDLINE | ID: mdl-31959985

ABSTRACT

Single-cell analyses have revealed extensive heterogeneity between and within human tumours1-4, but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions. Here we use imaging mass cytometry5 to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. Spatially resolved, single-cell analysis identified the phenotypes of tumour and stromal single cells, their organization and their heterogeneity, and enabled the cellular architecture of breast cancer tissue to be characterized on the basis of cellular composition and tissue organization. Our analysis reveals multicellular features of the tumour microenvironment and novel subgroups of breast cancer that are associated with distinct clinical outcomes. Thus, spatially resolved, single-cell analysis can characterize intratumour phenotypic heterogeneity in a disease-relevant manner, with the potential to inform patient-specific diagnosis.


Subject(s)
Breast Neoplasms/pathology , Molecular Imaging , Single-Cell Analysis , Biomarkers, Tumor/analysis , Breast Neoplasms/classification , Breast Neoplasms/diagnosis , Humans , Kaplan-Meier Estimate , Phenotype , Proportional Hazards Models , Survival Rate , Tumor Microenvironment
9.
Nat Cancer ; 1(2): 163-175, 2020 02.
Article in English | MEDLINE | ID: mdl-35122013

ABSTRACT

Genomic alterations shape cell phenotypes and the structure of tumor ecosystems in poorly defined ways. To investigate these relationships, we used imaging mass cytometry to quantify the expression of 37 proteins with subcellular spatial resolution in 483 tumors from the METABRIC cohort. Single-cell analysis revealed cell phenotypes spanning epithelial, stromal and immune types. Distinct combinations of cell phenotypes and cell-cell interactions were associated with genomic subtypes of breast cancer. Epithelial luminal cell phenotypes separated into those predominantly impacted by mutations and those affected by copy number aberrations. Several features of tumor ecosystems, including cellular neighborhoods, were linked to prognosis, illustrating their clinical relevance. In summary, systematic analysis of single-cell phenotypic and spatial correlates of genomic alterations in cancer revealed how genomes shape both the composition and architecture of breast tumor ecosystems and will enable greater understanding of the phenotypic impact of genomic alterations.


Subject(s)
Breast Neoplasms , Breast Neoplasms/diagnosis , Ecosystem , Female , Genomics/methods , Humans , Image Cytometry , Prognosis
10.
Nat Cancer ; 1(7): 692-708, 2020 07.
Article in English | MEDLINE | ID: mdl-35122040

ABSTRACT

Tumors are supported by cancer-associated fibroblasts (CAFs). CAFs are heterogeneous and carry out distinct cancer-associated functions. Understanding the full repertoire of CAFs and their dynamic changes as tumors evolve could improve the precision of cancer treatment. Here we comprehensively analyze CAFs using index and transcriptional single-cell sorting at several time points along breast tumor progression in mice, uncovering distinct subpopulations. Notably, the transcriptional programs of these subpopulations change over time and in metastases, transitioning from an immunoregulatory program to wound-healing and antigen-presentation programs, indicating that CAFs and their functions are dynamic. Two main CAF subpopulations are also found in human breast tumors, where their ratio is associated with disease outcome across subtypes and is particularly correlated with BRCA mutations in triple-negative breast cancer. These findings indicate that the repertoire of CAF changes over time in breast cancer progression, with direct clinical implications.


Subject(s)
Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Animals , Cancer-Associated Fibroblasts/metabolism , Humans , Membrane Glycoproteins/genetics , Mice , S100 Calcium-Binding Protein A4/genetics , Triple Negative Breast Neoplasms/genetics
11.
Cell Rep ; 27(9): 2690-2708.e10, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31141692

ABSTRACT

The detailed molecular characterization of lethal cancers is a prerequisite to understanding resistance to therapy and escape from cancer immunoediting. We performed extensive multi-platform profiling of multi-regional metastases in autopsies from 10 patients with therapy-resistant breast cancer. The integrated genomic and immune landscapes show that metastases propagate and evolve as communities of clones, reveal their predicted neo-antigen landscapes, and show that they can accumulate HLA loss of heterozygosity (LOH). The data further identify variable tumor microenvironments and reveal, through analyses of T cell receptor repertoires, that adaptive immune responses appear to co-evolve with the metastatic genomes. These findings reveal in fine detail the landscapes of lethal metastatic breast cancer.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Genomics/methods , Mutation , Breast Neoplasms/secondary , Female , Gene Expression Profiling , Humans , Loss of Heterozygosity , Neoplasm Metastasis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Exome Sequencing
12.
Mod Pathol ; 32(9): 1244-1256, 2019 09.
Article in English | MEDLINE | ID: mdl-30976105

ABSTRACT

Although most women with luminal breast cancer do well on endocrine therapy alone, some will develop fatal recurrence thereby necessitating the need to prospectively determine those for whom additional cytotoxic therapy will be beneficial. Categorical combinations of immunohistochemical measures of ER, PR, HER2, and KI67 are traditionally used to classify patients into luminal A-like and B-like subtypes for chemotherapeutic reasons, but this may lead to the loss of prognostically relevant information. Here, we compared the prognostic value of quantitative measures of these markers, combined in the IHC4-score, to categorical combinations in subtypes. Using image analysis-based scores for all four markers, we computed the IHC4-score for 2498 patients with luminal breast cancer from two European study populations. We defined subtypes (A-like (ER + and PR + : and HER2- and low KI67) and B-like (ER + and/or PR + : and HER2 + or high KI67)) by combining binary categories of these markers. Hazard ratios and 95% confidence intervals for associations with 10-year breast cancer-specific survival were estimated in Cox proportional-hazard models. We accounted for clinical prognostic factors, including grade, tumor size, lymph-nodal involvement, and age, by using the PREDICT-score. Overall, Subtypes [hazard ratio (95% confidence interval) B-like vs. A-like = 1.64 (1.25-2.14); P-value < 0.001] and IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation = 1.32 (1.20-1.44); P-value < 0.001] were prognostic in univariable models. However, IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation = 1.24 (1.11-1.37); P-value < 0.001; likelihood ratio chi-square (LRχ2) = 12.5] provided more prognostic information than Subtype [hazard ratio (95% confidence interval) B-like vs. A-like = 1.38 (1.02-1.88); P-value = 0.04; LRχ2 = 4.3] in multivariable models. Further, higher values of the IHC4-score were associated with worse prognosis, regardless of subtype (P-heterogeneity = 0.97). These findings enhance the value of the IHC4-score as an adjunct to clinical prognostication tools for aiding chemotherapy decision-making in luminal breast cancer patients, irrespective of subtype.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Adult , Aged , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Humans , Ki-67 Antigen/biosynthesis , Middle Aged , Prognosis , Receptor, ErbB-2/biosynthesis , Receptors, Estrogen/biosynthesis , Receptors, Progesterone/biosynthesis
13.
Nature ; 567(7748): 399-404, 2019 03.
Article in English | MEDLINE | ID: mdl-30867590

ABSTRACT

The rates and routes of lethal systemic spread in breast cancer are poorly understood owing to a lack of molecularly characterized patient cohorts with long-term, detailed follow-up data. Long-term follow-up is especially important for those with oestrogen-receptor (ER)-positive breast cancers, which can recur up to two decades after initial diagnosis1-6. It is therefore essential to identify patients who have a high risk of late relapse7-9. Here we present a statistical framework that models distinct disease stages (locoregional recurrence, distant recurrence, breast-cancer-related death and death from other causes) and competing risks of mortality from breast cancer, while yielding individual risk-of-recurrence predictions. We apply this model to 3,240 patients with breast cancer, including 1,980 for whom molecular data are available, and delineate spatiotemporal patterns of relapse across different categories of molecular information (namely immunohistochemical subtypes; PAM50 subtypes, which are based on gene-expression patterns10,11; and integrative or IntClust subtypes, which are based on patterns of genomic copy-number alterations and gene expression12,13). We identify four late-recurring integrative subtypes, comprising about one quarter (26%) of tumours that are both positive for ER and negative for human epidermal growth factor receptor 2, each with characteristic tumour-driving alterations in genomic copy number and a high risk of recurrence (mean 47-62%) up to 20 years after diagnosis. We also define a subgroup of triple-negative breast cancers in which cancer rarely recurs after five years, and a separate subgroup in which patients remain at risk. Use of the integrative subtypes improves the prediction of late, distant relapse beyond what is possible with clinical covariates (nodal status, tumour size, tumour grade and immunohistochemical subtype). These findings highlight opportunities for improved patient stratification and biomarker-driven clinical trials.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/genetics , Neoplasm Recurrence, Local/classification , Neoplasm Recurrence, Local/genetics , Receptors, Estrogen/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Disease Progression , Female , Humans , Models, Biological , Neoplasm Metastasis/genetics , Neoplasm Recurrence, Local/pathology , Organ Specificity , Prognosis , Receptor, ErbB-2/deficiency , Receptor, ErbB-2/genetics , Receptors, Estrogen/analysis , Receptors, Estrogen/deficiency , Time Factors , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
14.
Int J Cancer ; 143(4): 746-757, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29492969

ABSTRACT

Limited epidemiological evidence suggests that the etiology of hormone receptor positive (HR+) breast cancer may differ by levels of histologic grade and proliferation. We pooled risk factor and pathology data on 5,905 HR+ breast cancer cases and 26,281 controls from 11 epidemiological studies. Proliferation was determined by centralized automated measures of KI67 in tissue microarrays. Odds ratios (OR), 95% confidence intervals (CI) and p-values for case-case and case-control comparisons for risk factors in relation to levels of grade and quartiles (Q1-Q4) of KI67 were estimated using polytomous logistic regression models. Case-case comparisons showed associations between nulliparity and high KI67 [OR (95% CI) for Q4 vs. Q1 = 1.54 (1.22, 1.95)]; obesity and high grade [grade 3 vs. 1 = 1.68 (1.31, 2.16)] and current use of combined hormone therapy (HT) and low grade [grade 3 vs. 1 = 0.27 (0.16, 0.44)] tumors. In case-control comparisons, nulliparity was associated with elevated risk of tumors with high but not low levels of proliferation [1.43 (1.14, 1.81) for KI67 Q4 vs. 0.83 (0.60, 1.14) for KI67 Q1]; obesity among women ≥50 years with high but not low grade tumors [1.55 (1.17, 2.06) for grade 3 vs. 0.88 (0.66, 1.16) for grade 1] and HT with low but not high grade tumors [3.07 (2.22, 4.23) for grade 1 vs. 0.85 (0.55, 1.30) for grade 3]. Menarcheal age and family history were similarly associated with HR+ tumors of different grade or KI67 levels. These findings provide insights into the etiologic heterogeneity of HR+ tumors.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/pathology , Cell Proliferation , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Body Mass Index , Breast Neoplasms/metabolism , Case-Control Studies , Contraceptives, Oral, Hormonal , Female , Humans , Ki-67 Antigen/metabolism , Middle Aged , Neoplasm Grading , Obesity/complications , Parity , Risk Factors
15.
Cell Death Differ ; 25(5): 828-840, 2018 05.
Article in English | MEDLINE | ID: mdl-29229993

ABSTRACT

PP2A is a major tumor suppressor whose inactivation is frequently found in a wide spectrum of human tumors. In particular, deletion or epigenetic silencing of genes encoding the B55 family of PP2A regulatory subunits is a common feature of breast cancer cells. A key player in the regulation of PP2A/B55 phosphatase complexes is the cell cycle kinase MASTL (also known as Greatwall). During cell division, inhibition of PP2A-B55 by MASTL is required to maintain the mitotic state, whereas inactivation of MASTL and PP2A reactivation is required for mitotic exit. Despite its critical role in cell cycle progression in multiple organisms, its relevance as a therapeutic target in human cancer and its dependence of PP2A activity is mostly unknown. Here we show that MASTL overexpression predicts poor survival and shows prognostic value in breast cancer patients. MASTL knockdown or knockout using RNA interference or CRISPR/Cas9 systems impairs proliferation of a subset of breast cancer cells. The proliferative function of MASTL in these tumor cells requires its kinase activity and the presence of PP2A-B55 complexes. By using a new inducible CRISPR/Cas9 system in breast cancer cells, we show that genetic ablation of MASTL displays a significant therapeutic effect in vivo. All together, these data suggest that the PP2A inhibitory kinase MASTL may have both prognostic and therapeutic value in human breast cancer.


Subject(s)
Breast Neoplasms/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins/biosynthesis , Neoplasm Proteins/metabolism , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Animals , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Mice , Mice, Nude , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Protein Phosphatase 2/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
16.
BMC Cancer ; 17(1): 657, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28931370

ABSTRACT

BACKGROUND: There is evidence that some ovarian tumours evoke an immune response, which can be assessed by tumour infiltrating lymphocytes (TILs). To facilitate adoption of TILs as a clinical biomarker, a standardised method for their H&E visual evaluation has been validated in breast cancer. METHODS: We sought to investigate the prognostic significance of TILs in a study of 953 invasive epithelial ovarian cancer tumour samples, both primary and metastatic, from 707 patients from the prospective population-based SEARCH study. TILs were analysed using a standardised method based on H&E staining producing a percentage score for stromal and intratumoral compartments. We used Cox regression to estimate hazard ratios of the association between TILs and survival. RESULTS: The extent of stromal and intra-tumoral TILs were correlated in the primary tumours (n = 679, Spearman's rank correlation = 0.60, P < 0.001) with a similar correlation in secondary tumours (n = 224, Spearman's rank correlation = 0.62, P < 0.001). There was a weak correlation between stromal TIL levels in primary and secondary tumour samples (Spearman's rank correlation = 0.29, P < 0.001) and intra-tumoral TIL levels in primary and secondary tumour samples (Spearman's rank correlation = 0.19, P = 0.0094). The extent of stromal TILs differed between histotypes (Pearson chi2 (12d.f.) 54.1, P < 0.0001) with higher levels of stromal infiltration in the high-grade serous and endometriod cases. A significant association was observed for higher intratumoral TIL levels and a favourable prognosis (HR 0.74 95% CI 0.55-1.00 p = 0.047). CONCLUSION: This study is the largest collection of epithelial ovarian tumour samples evaluated for TILs. We have shown that stromal and intratumoral TIL levels are correlated and that their levels correlate with clinical variables such as tumour histological subtype. We have also shown that increased levels of both intratumoral and stromal TILs are associated with a better prognosis; however, this is only statistically significant for intratumoral TILs. This study suggests that a clinically useful immune prognostic indicator in epithelial ovarian cancer could be developed using this technique.


Subject(s)
Lymphocytes, Tumor-Infiltrating/pathology , Neoplasms, Glandular and Epithelial/immunology , Ovarian Neoplasms/immunology , Case-Control Studies , Female , Humans , Middle Aged , Neoplasms, Glandular and Epithelial/mortality , Neoplasms, Glandular and Epithelial/secondary , Neoplasms, Glandular and Epithelial/therapy , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Proportional Hazards Models , Treatment Outcome
17.
Oncotarget ; 8(11): 18381-18398, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28179588

ABSTRACT

TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes.In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 × 10-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 × 10-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines.If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer.


Subject(s)
Anthracyclines/therapeutic use , Breast Neoplasms/genetics , Quantitative Trait Loci , Adult , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/pathology , Female , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , SKP Cullin F-Box Protein Ligases/genetics , Survival Analysis , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Young Adult
19.
Nat Commun ; 7: 13874, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004812

ABSTRACT

Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer.


Subject(s)
Catenins/metabolism , Cytokinesis , Microtubule-Associated Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Catenins/genetics , Cell Adhesion , Cell Line, Tumor , Female , HeLa Cells , Humans , Kaplan-Meier Estimate , Mice, Knockout , Protein Binding , Delta Catenin
20.
PLoS Med ; 13(12): e1002194, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27959923

ABSTRACT

BACKGROUND: Immune infiltration of breast tumours is associated with clinical outcome. However, past work has not accounted for the diversity of functionally distinct cell types that make up the immune response. The aim of this study was to determine whether differences in the cellular composition of the immune infiltrate in breast tumours influence survival and treatment response, and whether these effects differ by molecular subtype. METHODS AND FINDINGS: We applied an established computational approach (CIBERSORT) to bulk gene expression profiles of almost 11,000 tumours to infer the proportions of 22 subsets of immune cells. We investigated associations between each cell type and survival and response to chemotherapy, modelling cellular proportions as quartiles. We found that tumours with little or no immune infiltration were associated with different survival patterns according to oestrogen receptor (ER) status. In ER-negative disease, tumours lacking immune infiltration were associated with the poorest prognosis, whereas in ER-positive disease, they were associated with intermediate prognosis. Of the cell subsets investigated, T regulatory cells and M0 and M2 macrophages emerged as the most strongly associated with poor outcome, regardless of ER status. Among ER-negative tumours, CD8+ T cells (hazard ratio [HR] = 0.89, 95% CI 0.80-0.98; p = 0.02) and activated memory T cells (HR 0.88, 95% CI 0.80-0.97; p = 0.01) were associated with favourable outcome. T follicular helper cells (odds ratio [OR] = 1.34, 95% CI 1.14-1.57; p < 0.001) and memory B cells (OR = 1.18, 95% CI 1.0-1.39; p = 0.04) were associated with pathological complete response to neoadjuvant chemotherapy in ER-negative disease, suggesting a role for humoral immunity in mediating response to cytotoxic therapy. Unsupervised clustering analysis using immune cell proportions revealed eight subgroups of tumours, largely defined by the balance between M0, M1, and M2 macrophages, with distinct survival patterns by ER status and associations with patient age at diagnosis. The main limitations of this study are the use of diverse platforms for measuring gene expression, including some not previously used with CIBERSORT, and the combined analysis of different forms of follow-up across studies. CONCLUSIONS: Large differences in the cellular composition of the immune infiltrate in breast tumours appear to exist, and these differences are likely to be important determinants of both prognosis and response to treatment. In particular, macrophages emerge as a possible target for novel therapies. Detailed analysis of the cellular immune response in tumours has the potential to enhance clinical prediction and to identify candidates for immunotherapy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/immunology , Gene Expression , Cluster Analysis , Female , Humans , Proportional Hazards Models , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...