Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(4): 3614-3622, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38223943

ABSTRACT

Over the past decade, perovskites have received considerable attention because of their record power conversion efficiency (25.7%) in solar cells. These materials have also received recent research interest in thermoelectrics, most likely due to their high carrier mobility, large power factor, and ultralow thermal conductivity. Therefore, in the present work, we have examined the optoelectronic and thermoelectric properties of A2NaIO6 (A = Ca, Sr) double perovskites using first-principles calculations. Stability has been confirmed using reliable and accurate descriptors of formation energy and phonon calculations. The optimized lattice constant and volume show an increasing tendency with changing A site cation (Ca → Sr). The computed band structures depict the semiconducting nature with direct band gap values of 2.64 eV (Ca2NaIO6) and 2.48 eV (Sr2NaIO6). The absorption was found to start in the visible range where the reflectivity was less than 10%. Moreover, the high Seebeck coefficient, large electrical conductivity, and fairly low thermal conductivity result in ZT values of 0.724 for Ca2NaIO6 and 0.686 for Sr2NaIO6 at 1000 K. With their optimum band gap, excellent light absorption capacity, and high ZT values, A2NaIO6 emerge as promising candidates for optoelectronic and thermoelectric applications.

2.
J Comput Chem ; 44(23): 1875-1883, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37224190

ABSTRACT

This article presents detailed structural, electronic, magnetic, and thermoelectric properties of two experimentally existing isostructural variant perovskite compounds Tl2 NbX6 (X = Cl, Br) with the help of first principles calculations. As per requirement of stability in the device applications, the structural and thermodynamic stabilities were, respectively verified by tolerance factor and negative formation energies. The structural parameters in ferromagnetic phase were calculated and found in close agreement with the available experimental results. The electronic nature was found as half metallic from spin polarized calculations of electronic band structures and density of states, where the semiconductor nature was found in the spin down states and metallic nature in the spin up states. The magnetic moments of both the compounds were calculated as 1 µB majorly contributed by Nb atom. The Boltzmann transport theory was implemented via BoltzTraP for calculating the spin resolved thermoelectric parameters, such as Seebeck coefficient, electronic and thermal conductivities, and figure of merit. Overall, both the compounds were found suitable for use in spintronics and spin Seebeck effect for energy applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...