Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771793

ABSTRACT

This research investigates the flexural and durability performances of reinforced concrete (RC) beams made with induction furnace steel slag aggregate (IFSSA) as a replacement for fired clay brick aggregate (FCBA). To achieve this, 27 RC beams (length: 750 mm, width: 125 mm, height: 200 mm) were made with FCBA replaced by IFSSA at nine replacement levels of 0%, 10%, 20%, 30%, 40%, 50%, 60%, 80%, and 100% (by volume). Flexural tests of RC beams were conducted by a four-point loading test, where the deflection behavior of the beams was monitored through three linear variable displacement transducers (LVDT). The compressive strength and durability properties (i.e., porosity, resistance to chloride ion penetration, and capillary water absorption) were assessed using the same batch of concrete mix used to cast RC beams. The experimental results have shown that the flexural load of RC beams made with IFSSA was significantly higher than the control beam (100% FCBA). The increment of the flexural load was proportional to the content of IFSSA, with an increase of 27% for the beam made with 80% IFSSA than the control beam. The compressive strength of concrete increased by 56% and 61% for the concrete made with 80% and 100% IFSSA, respectively, than the control concrete, which is in good agreement with the flexural load of RC beams. Furthermore, the porosity, resistance to chloride ion penetration, and capillary water absorption were inversely proportional to the increase in the content of IFSSA. For instance, porosity, chloride penetration, and water absorption decreased by 43%, 54%, and 68%, respectively, when IFSSA entirely replaced FCBA. This decreasing percentage of durability properties is in agreement with the flexural load of RC beams. A good linear relationship of porosity with chloride penetration resistance and capillary water absorption was observed.

2.
Materials (Basel) ; 13(5)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151088

ABSTRACT

This study evaluates the mechanical, durability, and residual compressive strength (after being exposed to 20, 120, 250, 400 and 600 °C) of mortar that uses recycled iron powder (RIP) as a fine aggregate. Within this context, mechanical strength, shrinkage, durability, and residual strength tests were performed on mortar made with seven different percentages (0%, 5%, 10%, 15%, 20%, 30% and 50%) of replacement of natural sand (NS) by RIP. It was found that the mechanical strength of mortar increased when replaced with up to 30% NS by RIP. In addition, the increase was 30% for compressive, 18% for tensile, and 47% for flexural strength at 28 days, respectively, compared to the reference mortar (mortar made with 100% NS). Shrinkage was observed for the mortar made with 100% NS, while both shrinkage and expansion occurred in the mortar made with RIP, especially for RIP higher than 5%. Furthermore, significantly lower porosity and capillary water absorption were observed for mortar made with up to 30% RIP, compared to that made with 100% NS, which decreased by 36% for porosity and 48% for water absorption. As the temperature increased, the strength decreased for all mixes, and the drop was more pronounced for the temperatures above 250 °C and 50% RIP. This study demonstrates that up to 30% RIP can be utilized as a fine aggregate in mortar due to its better mechanical and durability performances.

SELECTION OF CITATIONS
SEARCH DETAIL