Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Oncol ; 41(8): 202, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008137

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/ß-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.


Subject(s)
Immunotherapy , Neoplasms , Proprotein Convertase 9 , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/pathology , Proprotein Convertase 9/immunology , Proprotein Convertase 9/metabolism , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , PCSK9 Inhibitors
2.
Med Oncol ; 41(8): 201, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001987

ABSTRACT

Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.


Subject(s)
Pancreatic Neoplasms , Phytochemicals , Tumor Microenvironment , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Tumor Microenvironment/drug effects , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Nanoparticles
3.
Int J Biol Macromol ; 273(Pt 1): 132916, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844287

ABSTRACT

During the last decades, the ever-increasing incidence of diseases has led to high rates of mortality throughout the world. On the other hand, the inability and deficiencies of conventional approaches (such as chemotherapy) in the suppression of diseases remain challenging issues. As a result, there is a fundamental requirement to develop novel, biocompatible, bioavailable, and practical nanomaterials to prevent the incidence and mortality of diseases. Chitosan (CS) derivatives and their blends are outstandingly employed as promising drug delivery systems for disease therapy. These biopolymers are indicated more efficient performance against diseases compared with conventional modalities. The CS blends possess improved physicochemical properties, ease of preparation, high affordability, etc. characteristics compared with other biopolymers and even pure CS which result in efficient thermal, mechanical, biochemical, and biomedical features. Also, these blends can be administrated through different routes without a long-term treatment period. Due to the mentioned properties, numerous formulations of CS blends are developed for pharmaceutical sciences to treat diseases. This review article highlights the progressions in the development of CS-based blends as potential drug delivery systems against diseases.


Subject(s)
Chitosan , Drug Delivery Systems , Chitosan/chemistry , Humans , Drug Delivery Systems/methods , Drug Carriers/chemistry , Animals
4.
Cell Biochem Funct ; 42(3): e4009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597217

ABSTRACT

Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.


Subject(s)
Breast Neoplasms , Signal Transduction , Female , Humans
5.
Pathol Res Pract ; 255: 155158, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320438

ABSTRACT

Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-ß (TGF-ß) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-ß signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-ß signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-ß pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-ß signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-ß signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-ß signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-ß signaling cascade through the manipulation of ncRNAs.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism , RNA, Untranslated/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
6.
Pathol Res Pract ; 254: 155050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199132

ABSTRACT

Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Neoplasms/genetics , Biomarkers
7.
Pathol Res Pract ; 250: 154794, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37683389

ABSTRACT

MiRNAs have emerged as crucial modulators of the expression of their target genes, attracting significant attention due to their engagement in various cellular processes, like cancer onset and development. Amidst the extensive repertoire of miRNAs implicated in cancer, miR-136-5p has emerged as an emerging miRNA with diverse roles. Dysregulation of miR-136-5p has been proved in human cancers. Accumulating evidence suggests that miR-136-5p mainly functions as a tumor suppressor. These data proposed that miR-136-5p is engaged in the regulation of various cellular processes, like cell proliferation, migration, invasion, EMT, and apoptosis. In addition, miR-136-5p has demonstrated substantial potential as a prognostic and diagnostic marker in human cancers as well as an effective mediator in cancer chemotherapy. Furthermore, miR-136-5p was shown to be correlated with clinicopathological features of affected patients, proposing that it could be used for cancer staging and patient survival. Therefore, a comprehensive comprehension of the precise molecular basis governing miR-136-5p dysregulation in different cancers is vital for unraveling its therapeutic importance. Here, we have discussed the molecular basis of miR-136-5p as a potential tumor suppressor as well as its importance in cancer diagnosis, prognosis, and chemotherapy. Finally, we have discussed the challenge of using miRNAs as a therapeutic target as well as the prospect regarding the importance of miR-136-5p in human cancers.

8.
Biotechnol Prog ; 39(6): e3374, 2023.
Article in English | MEDLINE | ID: mdl-37454344

ABSTRACT

Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Regenerative Medicine , Regenerative Medicine/methods , Cell Differentiation , Umbilical Cord , Adipose Tissue
SELECTION OF CITATIONS
SEARCH DETAIL
...