Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(6): 3549-3558, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32022547

ABSTRACT

Fluorinated hydrocarbon (FHC) contamination has attracted global attention recently because of persistence within the environment and ecosystems of many types of FHC. The surfactant perfluorooctanoic acid (PFOA) is particularly commonly found in contaminated sites, and thus, urgent action is needed for its removal from the environment. In this study, water dispersible hybrid capsules were successfully prepared from an oil-in-water emulsion stabilized by graphene oxide and including a silicate precursor to grow a strong, mesoporous capsule shell surrounding the droplets. These capsules were decorated with amine groups to present a positively charged outer corona that attracts negative PFOA molecules. The aminated capsules were effectively applied as a novel technology to adsorb and sequester PFOA contamination in water. It was confirmed that PFOA removal by the capsules was pH and PFOA concentration dependent, with adsorption efficiencies of >60 mg g-1 under ideal conditions. PFOA removal kinetics followed using high-performance liquid chromatography and liquid chromatography-mass spectrometry showed that capture of PFOA by the capsules reached a maximum of >99.9% in 2-3 days.


Subject(s)
Fluorocarbons , Silicon Dioxide , Caprylates , Capsules , Ecosystem , Graphite
2.
ACS Nano ; 13(8): 8957-8969, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31314988

ABSTRACT

Graphene oxide liquid crystals (GOLCs) were exfoliated in a wide variety of solvents (water, ethylene glycol (EG), N-methyl-2-pyrrolidone (NMP), and dimethylformamide (DMF)) by high-speed shearing of graphite oxide. Quantitative polarized light imaging of the equilibrium nematic phases of the lyotropic GOLCs gives insights into the extent of aggregation and quantifiable textural features such as domain size, d. Large nematic domains >100 µm with a high overall degree of order were obtained in water and ethylene glycol, in contrast to ∼5-50 µm domains in NMP and DMF at comparable volume fractions. Comprehensive rheological studies of these GOLCs indicate that larger domains correlate with higher viscosity and higher elasticity, and scaling analysis shows a power-law dependence of the Ericksen number (Er) with domain size (Er ∝ d3.09). The improved understanding of the relationship between the microstructure and flow properties of GOLCs leads us to an approach of mixed solvent-based GOLCs as a means to tune viscoelastic properties. We demonstrate this approach for the formation of shear-aligned GOLC films for advanced flexible electronic applications such as all-carbon conductive films and thermal heaters.

3.
J Colloid Interface Sci ; 552: 528-539, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31154246

ABSTRACT

Encapsulation of active or valuable cargoes has become one of the most important methods for controlled delivery and release. However, many existing capsule technologies suffer from scalability issues, and capsules from surfactant- or polymer-stabilised emulsions tend to have weak shells or limited stability. Here we present a robust and scalable method for the surfactant-free preparation of silica hybrid capsules templated from Pickering emulsions stabilised by graphene oxide. These capsules are produced using a single step, undemanding formulation process with cheap and scalable precursors. The mechanical and chemical stability provided by the silica shell grown around these droplets is explored using surface pressure measurements and atomic force microscopy, demonstrating that a rigid and robust capsule is produced from higher loadings of silica precursor. In order to demonstrate the utility of these capsules, the sustained release of a fragrance molecule (vanillin) from the capsules is monitored, and compared to release from unencapsulated vanilla oil. It is seen that the capsules retain the fragrance for multiple weeks, offering new pathways for scalable encapsulation systems for the delivery of valuable actives.


Subject(s)
Benzaldehydes/chemistry , Graphite/chemistry , Silicon Dioxide/chemistry , Capsules/chemistry , Particle Size , Pressure , Surface Properties
4.
ACS Appl Mater Interfaces ; 9(21): 18187-18198, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28492312

ABSTRACT

Graphene oxide/polystyrene (GO/PS) nanocomposite capsules containing a two-compartment cargo have been successfully fabricated using a Pickering emulsion strategy. Highly purified GO sheets with typically micrometer-scale lateral dimensions and amphiphilic characteristics were prepared from the oxidation reaction of graphite with concomitant exfoliation of the graphite structure. These GO sheets were employed as a stabilizer for oil-in-water emulsions where the oil phase comprised toluene or olive oil. The stability and morphology of the emulsions were extensively studied as a function of different parameters including GO concentration, aqueous phase pH, ultrasonication time, effects of added electrolytes and stability to dilution. In selected conditions, the olive oil emulsions showed spontaneous formation of multiple w/o/w emulsions with high stability, whereas toluene formed simple o/w emulsions of lower overall stability. Olive oil emulsions were therefore used to prepare capsules templated from emulsion droplets by surrounding the oil phase with a GO/PS shell. The GO sheets, emulsions and composite capsules were characterized using a variety of physical and spectroscopic techniques in order to unravel the interactions responsible for capsule formation. The ability of the capsules to control the release of a model active agent in the form of a hydrophilic dye was explored, and release kinetics were monitored using UV-visible spectroscopy to obtain rate parameters. The composite capsules showed promising sustained release properties, with release rates 11× lower than the precursor GO-stabilized multiple emulsion droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...