Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(21): 18811-18822, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273621

ABSTRACT

Semisynthetic modifications of natural products have bestowed us with many anticancer drugs. In the present work, a natural product, eugenol, has been modified synthetically to generate new anticancer agents. The final compounds were structurally confirmed by NMR, IR, and mass techniques. From the cytotoxicity results, compound 17 bearing morpholine was found to be the most active cytotoxic agent with IC50 1.71 (MCF-7), 1.84 (SKOV3), and 1.1 µM (PC-3) and a thymidylate synthase (TS) inhibitor with an IC50 of 0.81 µM. Further cellular studies showed that compound 17 could induce apoptosis and arrest the cell cycle at the S phase in PC-3 carcinoma. The docking study strongly favors compound 17 to be a TS inhibitor as it displayed a similar interaction to 5-fluorouracil. The in silico pharmacokinetics and DFT computational studies support the results obtained from docking and biological evaluation and displayed favorable pharmacokinetic profile for a drug to be orally available. Compound 17 was found to be a promising TS inhibitor which could suppress DNA synthesis and consequently DNA damage in prostate cancer cells.

2.
Nanomaterials (Basel) ; 12(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214995

ABSTRACT

Cancer and microbial infections constitute a major burden and leading cause of death globally. The development of therapeutic compounds from natural products is considered a cornerstone in drug discovery. Therefore, in the present study, the ethanolic extract and the fractions of Dodonaea viscosa and Juniperus procera were evaluated for anticancer and antimicrobial activities. It was found that two fractions, JM and DC, exhibited promising anticancer and antimicrobial activities. The JM and DC fractions were further modified into ZnO nanocomposites, which were characterized by SEM, XRD, TGA, and EDX. It was noted that the synthesized nanocomposites displayed remarkable enhancement in cytotoxicity as well as antibacterial activity. Nanocomposite DC-ZnO NRs exhibited cytotoxicity with IC50 values of 16.4 ± 4 (HepG2) and 29.07 ± 2.7 µg/mL (HCT-116) and JM-ZnO NRs with IC50 values of 12.2 ± 10.27 (HepG2) and 24.1 ± 3.0 µg/mL (HCT-116). In addition, nanocomposites of DC (i.e., DC-ZnO NRs) and JM (i.e., JM-ZnO NRs) displayed excellent antimicrobial activity against Staphylococcus aureus with MICs of 2.5 and 1.25 µg/mL, respectively. Moreover, these fractions and nanocomposites were tested for cytotoxicity against normal fibroblasts and were found to be non-toxic. GC-MS analysis of the active fractions were also carried out to discover the possible phytochemicals that are responsible for these activities.

3.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34577567

ABSTRACT

A library of 1,2,3-triazole-incorporated thymol-1,3,4-oxadiazole derivatives (6-18) hasbeen synthesized and tested for anticancer and antimicrobial activities. Compounds 7, 8, 9, 10, and 11 exhibited significant antiproliferative activity. Among these active derivatives, compound 2-(4-((5-((2-isopropyl-5-methylphenoxy)methyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol (9) was the best compound against all three tested cell lines, MCF-7 (IC50 1.1 µM), HCT-116 (IC50 2.6 µM), and HepG2 (IC50 1.4 µM). Compound 9 was found to be better than the standard drugs, doxorubicin and 5-fluorouracil. These compounds showed anticancer activity through thymidylate synthase inhibition as they displayed significant TS inhibitory activity with IC50 in the range 1.95-4.24 µM, whereas the standard drug, Pemetrexed, showed IC50 7.26 µM. The antimicrobial results showed that some of the compounds (6, 7, 9, 16, and 17) exhibited good inhibition on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The molecular docking and simulation studies supported the anticancer and antimicrobial data. It can be concluded that the synthesized 1,2,3-triazole tethered thymol-1,3,4-oxadiazole conjugates have both antiproliferative and antimicrobial potential.

4.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202652

ABSTRACT

Thymidylate synthase (TS) has emerged as a hot spot in cancer treatment, as it is directly involved in DNA synthesis. In the present article, nine hybrids containing 1,2,3-triazole and 1,3,4-oxadiazole moieties (6-14) were synthesized and evaluated for anticancer and in vitro thymidylate synthase activities. According to in silico pharmacokinetic studies, the synthesized hybrids exhibited good drug likeness properties and bioavailability. The cytotoxicity results indicated that compounds 12 and 13 exhibited remarkable inhibition on the tested Michigan Cancer Foundation (MCF-7) and Human colorectal Carcinoma (HCT-116) cell lines. Compound 12 showed four-fold inhibition to a standard drug, 5-fluoruracil, and comparable inhibition to tamoxifen, whereas compound 13 exerted five-fold activity of tamoxifen and 24-fold activity of 5-fluorouracil for MCF-7 cells. Compounds 12 and 13 inhibited thymidylate synthase enzyme, with an half maximal inhibitory concentration, IC50 of 2.52 µM and 4.38 µM, while a standard drug, pemetrexed, showed IC50 = 6.75 µM. The molecular docking data of compounds 12 and 13 were found to be in support of biological activities data. In conclusion, hybrids (12 and 13) may inhibit thymidylate synthase enzyme, which could play a significant role as a chemotherapeutic agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...