Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770442

ABSTRACT

Tungsten disulphide (WS2) is a two-dimensional transition-metal dichalcogenide material that can be used to improve the sensitivity of a variety of sensing applications. This study investigated the effect of WS2 coating on tapered region microfiber (MF) for relative humidity (RH) sensing applications. The flame brushing technique was used to taper the standard single-mode fiber (SMF) into three different waist diameter sizes of MF 2, 5, and 10 µm, respectively. The MFs were then coated with WS2 via a facile deposition method called the drop-casting technique. Since the MF had a strong evanescent field that allowed fast near-field interaction between the guided light and the environment, depositing WS2 onto the tapered region produced high humidity sensor sensitivity. The experiments were repeated three times to measure the average transmitted power, presenting repeatability and sensing stability. Each MF sample size was tested with varying humidity levels. Furthermore, the coated and non-coated MF performances were compared in the RH range of 45-90% RH at room temperature. It was found that the WS2 coating on 2 µm MF had a high sensitivity of 0.0861 dB/% RH with linearity over 99%. Thus, MF coated with WS2 encourages enhancement in the evanescent field effect in optical fiber humidity sensor applications.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34578683

ABSTRACT

Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.

3.
Biosensors (Basel) ; 11(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34436055

ABSTRACT

Understanding environmental information is necessary for functions correlated with human activities to improve healthcare quality and reduce ecological risk. Tapered optical fibers reduce some limitations of such devices and can be considerably more responsive to fluorescence and absorption properties changes. Data have been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, PubMed, and Google Scholar. In this narrative review, we have summarized and analyzed eight classes of tapered-fiber forms: fiber Bragg grating (FBG), long-period fiber grating (LPFG), Mach-Zehnder interferometer (MZI), photonic crystals fiber (PCF), surface plasmonic resonance (SPR), multi-taper devices, fiber loop ring-down technology, and optical tweezers. We evaluated many issues to make an informed judgement about the viability of employing the best of these methods in optical sensors. The analysis of performance for tapered optical fibers depends on four mean parameters: taper length, sensitivity, wavelength scale, and waist diameter. Finally, we assess the most potent strategy that has the potential for medical and environmental applications.


Subject(s)
Fiber Optic Technology , Optical Fibers , Humans , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...