Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Cureus ; 16(6): e61533, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957243

ABSTRACT

BACKGROUND: The prevalence of overweight and obesity among adolescents in Saudi Arabia has been progressively increasing. Obesity is associated with an increased risk of various morbidities and mortality. Identifying the factors that contribute to obesity in this age group is crucial for implementing targeted prevention measures. AIM: The aim of this study was to identify risk factors for overweight and obesity among adolescents aged nine to 17 years residing in Tabuk City, Saudi Arabia. METHODS: A case-control study was conducted during the 2021-2022 academic year at Alabnaa Schools in Tabuk City, Saudi Arabia. The study included overweight/obese individuals (cases, n = 125) and normal-weight individuals (controls, n = 201) who were selected based on their body mass index and classified according to the World Health Organization's reference for defining overweight and obesity in individuals aged five to 19 years. Data were collected from both groups using a self-administered questionnaire. RESULTS: The study analyzed 125 overweight/obese students and 201 normal-weight students who were matched for sex and age (p > 0.05). Logistic regression analysis identified several risk factors for overweight or obesity among adolescents. A family history of obesity was found to be associated with a 5.735 times increased likelihood of obesity (95% CI: 3.318-9.912, p < 0.001). Another significant contributing risk factor for obesity was frequent consumption of four or more meals per day (adjusted odds ratio: 3.091, 95% CI: 1.094-8.736, p = 0.033). Students who used electronic devices for more than five hours were 2.422 times more likely to exhibit obesity (p = 0.006). CONCLUSIONS: Certain factors may increase the risk of overweight or obesity in adolescents aged nine to 17 years. These factors include frequent eating, prolonged use of electronic devices, family history of obesity, and the misconception that obesity is not an illness. Tailored school health programs are needed to improve students' healthy lifestyles and eating behaviors, minimize sedentary entertainment and use of electronic devices, and engage children in physical activity.

2.
Bioengineering (Basel) ; 11(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790281

ABSTRACT

Anterior cruciate ligament (ACL) ruptures are prevalent knee injuries, with approximately 200,000 ruptures annually, and treatment costs exceed USD two billion in the United States alone. Typically, the initial detection of ACL tears and anterior tibial laxity (ATL) involves manual assessments like the Lachman test, which examines anterior knee laxity. Partial ACL tears can go unnoticed if they minimally affect knee laxity; however, they will progress to a complete ACL tear requiring surgical treatment. In this study, a computational finite element model (FEM) of the knee joint was generated to investigate the effect of partial ACL tears under the Lachman test (GNRB® testing system) boundary conditions. The ACL was modeled as a hyperelastic composite structure with a refined representation of collagen bundles. Five different tear types (I-V), classified by location and size, were modeled to predict the relationship between tear size, location, and anterior tibial translation (ATT). The results demonstrated different levels of ATT that could not be manually detected. Type I tears demonstrated an almost linear increase in ATT, with the growth in tear size ranging from 3.7 mm to 4.2 mm, from 25% to 85%, respectively. Type II partial tears showed a less linear incline in ATT (3.85, 4.1, and 4.75 mm for 25%, 55%, and 85% partial tears, respectively). Types III, IV, and V maintained a nonlinear trend, with ATTs of 3.85 mm, 4.2 mm, and 4.95 mm for Type III, 3.85 mm, 4.25 mm, and 5.1 mm for Type IV, and 3.6 mm, 4.25 mm, and 5.3 mm for Type V, for 25%, 55%, and 85% partial tears, respectively. Therefore, for small tears (25%), knee stability was most affected when the tears were located around the center of the ligament. For moderate tears (55%), the effect on knee stability was the greatest for tears at the proximal half of the ACL. However, severe tears (85%) demonstrated considerable growth in knee instability from the distal to the proximal ends of the tissue, with a substantial increase in knee instability around the insertion sites. The proposed model can enhance the characterization of partial ACL tears, leading to more accurate preliminary diagnoses. It can aid in developing new techniques for repairing partially torn ACLs, potentially preventing more severe injuries.

3.
ACS Biomater Sci Eng ; 10(6): 3707-3717, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38380517

ABSTRACT

Plant tissues are constructed as composite material systems of stiff cellulose microfibers reinforcing a soft matrix. Thus, they comprise smart and multifunctional structures that can change shape in response to external stimuli due to asymmetrical fiber alignment and possess robust mechanical properties. Herein, we demonstrate the biomimetics of the plant material system using silk fiber-reinforced alginate hydrogel matrix biocomposites. We fabricate single and bilamellar biocomposites with different fiber orientations. The mechanical behavior of the biocomposites is nonlinear, with large deformations, as in plant tissues. In general, the bilamellar system shows increased modulus, strain UTS, and toughness compared to the single-lamellar system for most of the tested orientations. Overall, the biocomposites present a wide range of elastic modulus values (3.0 ± 0.6-104.7 ± 11.3 MPa) and UTS values (0.23 ± 0.04-12.5 ± 2.0 MPa). The bilamellar biocomposites demonstrated shape-transforming abilities with diverse morphing modes, emulating different plant tissues and creating complex shape-morphing structures. These multifunctional biocomposites possess tunable and robust mechanical properties, controllable shape-morphing deformations, and the ability to self-controlled encapsulation, grip, and release objects. By harnessing biomimetic principles, these soft, smart, and multifunctional materials hold potential applications spanning from soft robotics, medicine, and tissue engineering to sensing and drug delivery.


Subject(s)
Alginates , Biomimetic Materials , Biomimetic Materials/chemistry , Alginates/chemistry , Biomimetics/methods , Hydrogels/chemistry , Silk/chemistry , Elastic Modulus , Plants/chemistry
4.
R Soc Open Sci ; 11(2): 230905, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38384780

ABSTRACT

Fibro-calcific aortic valve (AV) diseases are characterized by calcium growth or accumulation of fibrosis in the AV tissues. Fibrocalcific aortic stenosis (FAS) rises specifically in females, like calcification-induced aortic stenosis (CAS), may eventually necessitate valve replacement. Fluid-structure-interaction (FSI) computational models for severe CAS and FAS patients were developed using lattice Boltzmann method and multi-scale finite elements (FE). Three parametric AV models were introduced: pathology-free of non-calcified tri-and-bicuspid AVs with healthy collagen fibre network (CFN), a FAS model incorporated a thickened CFN with embedded small calcification volumes, and a CAS model employs healthy CFN with embedded high calcification volumes. The results indicate that the interaction between calcium deposits, adjacent tissue and fibres crucially influences haemodynamics and structural reactions. A fourth model of transcatheter aortic valve replacement (TAVR) post-procedure outcomes was created to study both CAS and FAS. TAVR-CAS had a higher maximum contact pressure and lower anchoring area than TAVR-FAS, making it prone to aortic tissue damage and migration. Finally, although the TAVR-CAS offered a larger opening area, its paravalvular leakage was higher. This may be attributed to a similar thrombogenicity potential characterizing both models. The computational framework emphasizes the significance of mechanobiology in FAS and underscores the requirement for tissue modelling at multiple scales.

5.
Elife ; 122023 06 28.
Article in English | MEDLINE | ID: mdl-37377399

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has caused disruptions to cancer care by delaying diagnoses and treatment, presenting challenges and uncertainties for both patients and physicians. We conducted a nationwide online survey to investigate the effects of the pandemic and capture modifications, prompted by pandemic-related control measures, on cervical cancer screening-related activities from mid-March to mid-August 2020, across Canada. Methods: The survey consisted of 61 questions related to the continuum of care in cervical cancer screening and treatment: appointment scheduling, tests, colposcopy, follow-up, treatment of pre-cancerous lesions/cancer, and telemedicine. We piloted the survey with 21 Canadian experts in cervical cancer prevention and care. We partnered with the Society of Canadian Colposcopists, Society of Gynecologic Oncology of Canada, Canadian Association of Pathologists, and Society of Obstetricians and Gynecologists of Canada, which distributed the survey to their members via email. We reached out to family physicians and nurse practitioners via MDBriefCase. The survey was also posted on McGill Channels (Department of Family Medicine News and Events) and social media platforms. The data were analyzed descriptively. Results: Unique responses were collected from 510 participants (November 16, 2020, to February 28, 2021), representing 418 fully and 92 partially completed surveys. Responses were from Ontario (41.0%), British Columbia (21.0%), and Alberta (12.8%), and mostly comprised family physicians/general practitioners (43.7%), and gynecologist/obstetrician professionals (21.6%). Cancelled screening appointments were mainly reported by family physicians/general practitioners (28.3%), followed by gynecologist/obstetrician professionals (19.8%), and primarily occurred in private clinics (30.5%). Decreases in the number of screening Pap tests and colposcopy procedures were consistently observed across Canadian provinces. About 90% reported that their practice/institution adopted telemedicine to communicate with patients. Conclusions: The area most severely impacted by the pandemic was appointment scheduling, with an important level of cancellations reported. Survey results may inform resumptions of various fronts in cervical cancer screening and management. Funding: The present work was supported by the Canadian Institutes of Health Research (operating grant COVID-19 May 2020 Rapid Research Funding Opportunity VR5-172666 Rapid Research competition and foundation grant 143347 to Eduardo L Franco). Eliya Farah and Rami Ali each received an MSc stipend from the Department of Oncology, McGill University.


Cervical cancer is a common cancer among women caused by infections with certain types of human papillomavirus (HPV). Nearly four in five people are infected with HPV during their lifetime, making it the most common sexually transmitted infection worldwide. Vaccination against the virus can prevent infections and routine screening for precancerous lesions can enable early diagnosis and treatment, improving outcomes. However, the COVID-19 pandemic has disrupted routine cervical cancer screening programs in several countries. This has caused delays in screening, which could result in more women being diagnosed with advanced-stage cancers. El-Zein et al. showed that despite the interrupted screening programmes, about half of practices in Canada were able to catch up on delayed screening by February 2021. Between November 2020 and February 2021, El-Zein et al. surveyed 510 Canadian healthcare professionals involved in cervical cancer screening and treatment. About 64%-75% of the respondents reported canceled or postponed screening appointments. Most appointment delays were less than four months. Fewer than one in ten delays were longer than six months. Most survey respondents said their practices pivoted to using telemedicine for some patient visits, such as cervical cancer screening follow-ups. About 40% of respondents suggested that the pandemic provided support to alternative screening options, such as HPV self-sampling at home. The survey results may help healthcare professionals and policymakers to develop plans that mitigate disruptions to cervical cancer screening during future emergencies.


Subject(s)
COVID-19 , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/diagnosis , Pandemics , Cross-Sectional Studies , Early Detection of Cancer , Delivery of Health Care , Ontario
6.
Biomech Model Mechanobiol ; 22(3): 837-850, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36763197

ABSTRACT

The lattice Boltzmann method (LBM) has been increasingly used as a stand-alone CFD solver in various biomechanical applications. This study proposes a new fluid-structure interaction (FSI) co-modeling framework for the hemodynamic-structural analysis of compliant aortic valves. Toward that goal, two commercial software packages are integrated using the lattice Boltzmann (LBM) and finite element (FE) methods. The suitability of the LBM-FE hemodynamic FSI is examined in modeling healthy tricuspid and bicuspid aortic valves (TAV and BAV), respectively. In addition, a multi-scale structural approach that has been employed explicitly recognizes the heterogeneous leaflet tissues and differentiates between the collagen fiber network (CFN) embedded within the elastin matrix of the leaflets. The CFN multi-scale tissue model is inspired by monitoring the distribution of the collagen in 15 porcine leaflets. Different simulations have been examined, and structural stresses and resulting hemodynamics are analyzed. We found that LBM-FE FSI approach can produce good predictions for the flow and structural behaviors of TAV and BAV and correlates well with those reported in the literature. The multi-scale heterogeneous CFN tissue structural model enhances our understanding of the mechanical roles of the CFN and the elastin matrix behaviors. The importance of LBM-FE FSI also emerges in its ability to resolve local hemodynamic and structural behaviors. In particular, the diastolic fluctuating velocity phenomenon near the leaflets is explicitly predicted, providing vital information on the flow transient nature. The full closure of the contacting leaflets in BAV is also demonstrated. Accordingly, good structural kinematics and deformations are captured for the entire cardiac cycle.


Subject(s)
Aortic Valve , Bicuspid Aortic Valve Disease , Swine , Animals , Elastin , Hemodynamics , Collagen , Models, Cardiovascular
7.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36718985

ABSTRACT

Background: The COVID-19 pandemic has disrupted cancer care, raising concerns regarding the impact of wait time, or 'lag time', on clinical outcomes. We aimed to contextualize pandemic-related lag times by mapping pre-pandemic evidence from systematic reviews and/or meta-analyses on the association between lag time to cancer diagnosis and treatment with mortality- and morbidity-related outcomes. Methods: We systematically searched MEDLINE, EMBASE, Web of Science, and Cochrane Library of Systematic Reviews for reviews published prior to the pandemic (1 January 2010-31 December 2019). We extracted data on methodological characteristics, lag time interval start and endpoints, qualitative findings from systematic reviews, and pooled risk estimates of mortality- (i.e., overall survival) and morbidity- (i.e., local regional control) related outcomes from meta-analyses. We categorized lag times according to milestones across the cancer care continuum and summarized outcomes by cancer site and lag time interval. Results: We identified 9032 records through database searches, of which 29 were eligible. We classified 33 unique types of lag time intervals across 10 cancer sites, of which breast, colorectal, head and neck, and ovarian cancers were investigated most. Two systematic reviews investigating lag time to diagnosis reported different findings regarding survival outcomes among paediatric patients with Ewing's sarcomas or central nervous system tumours. Comparable risk estimates of mortality were found for lag time intervals from surgery to adjuvant chemotherapy for breast, colorectal, and ovarian cancers. Risk estimates of pathologic complete response indicated an optimal time window of 7-8 weeks for neoadjuvant chemotherapy completion prior to surgery for rectal cancers. In comparing methods across meta-analyses on the same cancer sites, lag times, and outcomes, we identified critical variations in lag time research design. Conclusions: Our review highlighted measured associations between lag time and cancer-related outcomes and identified the need for a standardized methodological approach in areas such as lag time definitions and accounting for the waiting-time paradox. Prioritization of lag time research is integral for revised cancer care guidelines under pandemic contingency and assessing the pandemic's long-term effect on patients with cancer. Funding: The present work was supported by the Canadian Institutes of Health Research (CIHR-COVID-19 Rapid Research Funding opportunity, VR5-172666 grant to Eduardo L. Franco). Parker Tope, Eliya Farah, and Rami Ali each received an MSc. stipend from the Gerald Bronfman Department of Oncology, McGill University.


Subject(s)
COVID-19 , Colorectal Neoplasms , Ovarian Neoplasms , Humans , Child , Female , COVID-19/diagnosis , COVID-19/therapy , Pandemics , Canada , Systematic Reviews as Topic , COVID-19 Testing
8.
Ann Biomed Eng ; 51(5): 1014-1027, 2023 May.
Article in English | MEDLINE | ID: mdl-36451023

ABSTRACT

This study focuses on the calcification development and routes of type-1 bicuspid aortic valves based on CT scans and the effect of the unique geometrical shapes of calcium deposits on their fragmentation under balloon valvuloplasty procedures. Towards this goal, the novel Reverse Calcification Technique (RCT), which can predict the calcification progression leading to the current state based on CT scans, is utilized for n = 26 bicuspid aortic valves patients. Two main calcification patterns of type-1 bicuspid aortic valves were identified; asymmetric and symmetric with either partial or full arcs and circles. Subsequently, a calcification fragmentation biomechanical model was introduced to study the balloon valvuloplasty procedure prior to transcatheter aortic valve replacement implantation that allows better device expansion. To achieve this goal, six representative stenotic bicuspid aortic valves of different calcification patterns were investigated. It was found that the distinct geometrical shape of the calcium deposits had a significant effect on the cracks' initiations. Full or partial circle deposits had stronger resistance to fragmentation and mainly remained intact, yet, arc-shaped pattern deposits resulted in multiple cracks in bottleneck regions. The proposed biomechanical computational models could help assess calcification fragmentation patterns toward improving treatment approaches in stenotic bicuspid aortic valve patients, particularly for the off-label use of transcatheter aortic valve replacement.


Subject(s)
Aortic Valve Stenosis , Balloon Valvuloplasty , Bicuspid Aortic Valve Disease , Calcinosis , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Mitral Valve/surgery , Calcium , Calcinosis/diagnostic imaging , Treatment Outcome
9.
Ann Biomed Eng ; 51(1): 58-70, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36042099

ABSTRACT

Bicuspid aortic valve (BAV), the most common congenital heart malformation, is characterized by the presence of only two valve leaflets with asymmetrical geometry, resulting in elliptical systolic opening. BAV often leads to early onset of calcific aortic stenosis (AS). Following the rapid expansion of transcatheter aortic valve replacement (TAVR), designed specifically for treating conventional tricuspid AS, BAV patients with AS were initially treated "off-label" with TAVR, which recently gained FDA and CE regulatory approval. Despite its increasing use in BAV, pathological BAV anatomy often leads to complications stemming from mismatched anatomical features. To mitigate these complications, a novel eccentric polymeric TAVR valve incorporating asymmetrical leaflets was designed specifically for BAV anatomies. Computational modeling was used to optimize its asymmetric leaflets for lower functional stresses and improved hemodynamic performance. Deployment and flow were simulated in patient-specific BAV models (n = 6) and compared to a current commercial TAVR valve (Evolut R 29 mm), to assess deployment and flow parameters. The novel eccentric BAV-dedicated valve demonstrated significant improvements in peak systolic orifice area, along with lower jet velocity and wall shear stress (WSS). This feasibility study demonstrates the clinical potential of the first known BAV-dedicated TAVR design, which will foster advancement of patient-dedicated valvular devices.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Heart Valve Diseases , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve , Heart Valve Diseases/surgery , Patient-Specific Modeling , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
10.
Cardiovasc Eng Technol ; 13(6): 840-856, 2022 12.
Article in English | MEDLINE | ID: mdl-35391657

ABSTRACT

INTRODUCTION: Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, which had been treated off-label by transcatheter aortic valve replacement (TAVR) procedure for several years, until its recent approval by the Food and Drug Administration (FDA) and Conformité Européenne (CE) to treat BAVs. Post-TAVR complications tend to get exacerbated in BAV patients due to their inherent aortic root pathologies. Globally, due to the paucity of randomized clinical trials, clinicians still favor surgical AVR as the primary treatment option for BAV patients. While this warrants longer term studies of TAVR outcomes in BAV patient cohorts, in vitro experiments and in silico computational modeling can be used to guide the surgical community in assessing the feasibility of TAVR in BAV patients. Our goal is to combine these techniques in order to create a modeling framework for optimizing pre-procedural planning and minimize post-procedural complications. MATERIALS AND METHODS: Patient-specific in silico models and 3D printed replicas of 3 BAV patients with different degrees of post-TAVR paravalvular leakage (PVL) were created. Patient-specific TAVR device deployment was modeled in silico and in vitro-following the clinical procedures performed in these patients. Computational fluid dynamics simulations and in vitro flow studies were performed in order to obtain the degrees of PVL in these models. RESULTS: PVL degree and locations were consistent with the clinical data. Cross-validation comparing the stent deformation and the flow parameters between the in silico and the in vitro models demonstrated good agreement. CONCLUSION: The current framework illustrates the potential of using simulations and 3D printed models for pre-TAVR planning and assessing post-TAVR complications in BAV patients.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Transcatheter Aortic Valve Replacement , Humans , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Computer Simulation , Hydrodynamics , Aortic Valve Stenosis/surgery , Treatment Outcome
11.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Article in English | MEDLINE | ID: mdl-35120335

ABSTRACT

Calcific aortic valve disease (CAVD) is the most common heart valvular disease in the developed world. Most of the relevant research has been sex-blind, ignoring sex-related biological variables and thus under-appreciate sex differences. However, females present pronounced fibrosis for the same aortic stenosis (AS) severity compared with males, who exhibit more calcification. Herein, we present a computational model of fibrocalcific AV, aiming to investigate its effect on AS development. A parametric study was conducted to explore the influence of the total collagen fiber volume and its architecture on the aortic valve area (AVA). Towards that goal, computational models were generated for three females with stenotic AVs and different volumes of calcium. We have tested the influence of fibrosis on various parameters as fiber architecture, fibrosis location, and transvalvular pressure. We found that increased fiber volume with a low calcium volume could actively contribute to AS and reduce the AVA similarly to high calcium volume. Thus, the computed AVAs for our fibrocalcific models were 0.94 and 0.84 cm2and the clinical (Echo) AVAs were 0.82 and 0.8 cm2. For the heavily calcified model, the computed AVA was 0.8 cm2and the clinical AVA was 0.73 cm2. The proposed models demonstrated how collagen thickening influence the fibrocalcific-AS process in female patients. These models can assist in the clinical decision-making process and treatment development in valve therapy for female patients.


Subject(s)
Aortic Valve Stenosis , Calcium , Aortic Valve/pathology , Aortic Valve Stenosis/pathology , Female , Fibrosis , Finite Element Analysis , Humans , Male
12.
Artif Organs ; 46(7): 1305-1317, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35083748

ABSTRACT

BACKGROUND: Cardiac conduction abnormality (CCA)- one of the major persistent complications associated with transcatheter aortic valve replacement (TAVR) may lead to permanent pacemaker implantation. Localized stresses exerted by the device frame on the membranous septum (MS) which lies between the aortic annulus and the bundle of His, may disturb the cardiac conduction and cause the resultant CCA. We hypothesize that the area-weighted average maximum principal logarithmic strain (AMPLS) in the MS region can predict the risk of CCA following TAVR. METHODS: Rigorous finite element-based analysis was conducted in two patients (Balloon expandable TAVR recipients) to assess post-TAVR CCA risk. Following the procedure one of the patients required permanent pacemaker (PPM) implantation while the other did not (control case). Patient-specific aortic root was modeled, MS was identified from the CT image, and the TAVR deployment was simulated. Mechanical factors in the MS region such as logarithmic strain, contact force, contact pressure, contact pressure index (CPI) and their time history during the TAVR deployment; and anatomical factors such as MS length, implantation depth, were analyzed. RESULTS: Maximum AMPLS (0.47 and 0.37, respectively), contact force (0.92 N and 0.72 N, respectively), and CPI (3.99 and 2.86, respectively) in the MS region were significantly elevated in the PPM patient as compared to control patient. CONCLUSION: Elevated stresses generated by TAVR devices during deployment appear to correlate with CCA risk, with AMPLS in the MS region emerging as a strong predictor that could be used for preprocedural planning in order to minimize CCA risk.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis , Pacemaker, Artificial , Transcatheter Aortic Valve Replacement , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Cardiac Pacing, Artificial , Humans , Pacemaker, Artificial/adverse effects , Risk Assessment , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
13.
J Cardiovasc Transl Res ; 15(4): 834-844, 2022 08.
Article in English | MEDLINE | ID: mdl-34859367

ABSTRACT

Bicuspid aortic valve (BAV), the most common congenital valvular abnormality, generates asymmetric flow patterns and increased stresses on the leaflets that expedite valvular calcification and structural degeneration. Recently adapted for use in BAV patients, TAVR demonstrates promising performance, but post-TAVR complications tend to get exacerbated due to BAV anatomical complexities. Utilizing patient-specific computational modeling, we address some of these complications. The degree and location of post-TAVR PVL was assessed, and the risk of flow-induced thrombogenicity was analyzed in 3 BAV patients - using older generation TAVR devices that were implanted in these patients, and compared them to the performance of the newest generation TAVR devices using in silico patient models. Significant decrease in PVL and thrombogenic potential was observed after implantation of the newest generation device. The current work demonstrates the potential of using simulations in pre-procedural planning to assess post-TAVR complications, and compare the performance of different devices to achieve better clinical outcomes. Patient-specific computational framework to assess post-transcatheter bicuspid aortic valve replacement paravalvular leakage and flow-induced thrombogenic complications and compare device performances.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Patient-Specific Modeling , Computer Simulation , Aortic Valve Stenosis/surgery , Treatment Outcome
14.
Ann Biomed Eng ; 49(12): 3310-3322, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34708308

ABSTRACT

Bicuspid aortic valve (BAV) is the most common congenital heart disease. Calcific aortic valve disease (CAVD) accounts for the majority of aortic stenosis (AS) cases. Half of the patients diagnosed with AS have a BAV, which has an accelerated progression rate. This study aims to develop a computational modeling approach of both the calcification progression in BAV, and its biomechanical response incorporating fluid-structure interaction (FSI) simulations during the disease progression. The calcification is patient-specifically reconstructed from Micro-CT images of excised calcified BAV leaflets, and processed with a novel reverse calcification technique that predicts prior states of CAVD using a density-based criterion, resulting in a multilayered calcified structure. Four progressive multilayered calcified BAV models were generated: healthy, mild, moderate, and severe, and were modeled by FSI simulations during the full cardiac cycle. A valve apparatus model, composed of the excised calcified BAV leaflets, was tested in an in-vitro pulse duplicator, to validate the severe model. The healthy model was validated against echocardiography scans. Progressive AS was characterized by higher systolic jet flow velocities (2.08, 2.3, 3.37, and 3.85 m s-1), which induced intense vortices surrounding the jet, coupled with irregular recirculation backflow patterns that elevated viscous shear stresses on the leaflets. This study shed light on the fluid-structure mechanism that drives CAVD progression in BAV patients.


Subject(s)
Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/physiopathology , Aortic Valve/pathology , Bicuspid Aortic Valve Disease/physiopathology , Calcinosis/etiology , Calcinosis/physiopathology , Heart Defects, Congenital/complications , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Stenosis/diagnostic imaging , Biomechanical Phenomena , Calcinosis/diagnostic imaging , Computer Simulation , Disease Progression , Hemodynamics , Humans , In Vitro Techniques , Models, Cardiovascular , X-Ray Microtomography
15.
Nat Commun ; 12(1): 3839, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158493

ABSTRACT

Regarded as the most important ion in interstellar chemistry, the trihydrogen cation, [Formula: see text], plays a vital role in the formation of water and many complex organic molecules believed to be responsible for life in our universe. Apart from traditional plasma discharges, recent laboratory studies have focused on forming the trihydrogen cation from large organic molecules during their interactions with intense radiation and charged particles. In contrast, we present results on forming [Formula: see text] from bimolecular reactions that involve only an inorganic molecule, namely water, without the presence of any organic molecules to facilitate its formation. This generation of [Formula: see text] is enabled by "engineering" a suitable reaction environment comprising water-covered silica nanoparticles exposed to intense, femtosecond laser pulses. Similar, naturally-occurring, environments might exist in astrophysical settings where hydrated nanometer-sized dust particles are impacted by cosmic rays of charged particles or solar wind ions. Our results are a clear manifestation of how aerosolized nanoparticles in intense femtosecond laser fields can serve as a catalysts that enable exotic molecular entities to be produced via non-traditional routes.

16.
Biomech Model Mechanobiol ; 20(5): 1889-1901, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34191188

ABSTRACT

A unique three-dimensional (3D) computational multiscale modeling approach is proposed to investigate the influence of presence of microcalcification particles on the stress field distribution in the thin cap layer of a coronary atherosclerotic vulnerable plaque system. A nested 3D modeling analysis framework spanning the multiscale nature of a coronary atherosclerotic vulnerable plaque is presented. At the microscale level, a micromechanical modeling approach, which is based on computational finite-element (FE) representative unit cell, is applied to obtain the homogenized nonlinear response of the calcified tissue. This equivalent response effectively allows the integration of extremely small microcalcification inclusions in a global biomechanical FE model. Next, at the macroscale level, a 3D patient-based fluid-structure interaction FE model, reconstructing a refined coronary artery geometry with calcified plaque lesion, is generated to study the mechanical behavior of such multi-component biomechanical system. It is shown that the proposed multiscale modeling approach can generate a higher resolution of stress and strain field distributions within the coronary atherosclerotic vulnerable plaque system and allow the assessment of the local concentration stress around the microcalcifications in plaque cap layers. A comparison of stress field distributions within cap layers with and without inclusion of microcalcifications is also presented.


Subject(s)
Coronary Artery Disease/physiopathology , Plaque, Atherosclerotic/physiopathology , Atherosclerosis/physiopathology , Biomechanical Phenomena , Calcinosis/pathology , Computer Simulation , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/pathology , Elasticity , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Models, Cardiovascular , Nonlinear Dynamics , Plaque, Atherosclerotic/diagnostic imaging , Pressure , Stress, Mechanical , X-Ray Microtomography
17.
J Mech Behav Biomed Mater ; 119: 104526, 2021 07.
Article in English | MEDLINE | ID: mdl-33894525

ABSTRACT

Cardiovascular Diseases (CVDs) are the leading cause of death worldwide. Approximately 31% of all global deaths are caused by CVDs, of which 42% are attributable to coronary artery disease (CAD). CAD is characterized by a narrowing of arteries that restricts the normal blood flow. Over time, surgical intervention is required in severe cases of occlusions and includes implantation of autologous vessels. Today synthetic grafts are used successfully as replacements for blood vessels with a diameter larger than 6 mm. However, they often fail as small-diameter blood vessel replacements. This study introduces a new biocomposite material system consisting of unique and long (cm-scale) collagen fibers derived from soft corals embedded within an alginate hydrogel matrix. The new biocomposite layers were used to fabricate grafts, towards developing a new class of tissue-engineered small-diameter blood vessels. These constructs consisted of both circumferentially and longitudinally oriented collagen fibers. The mechanical properties of the grafts were investigated via a new experimental setup constructed in our lab for this purpose, which applied internal pressure levels of 0-300 mmHg. Similar to native coronary arteries, the biocomposite tubes demonstrated a compliance of 4.88 ± 0.99%/100 mmHg for a physiologic pressure range of 80-120 mmHg. Furthermore, a numerical finite element simulation model is proposed to generate the overall mechanical response of the construct. It is composed of axial and circumferential fibers embedded within the continuum alginate elements. Good prediction is demonstrated when compared with the measured pressure-strain response. Moreover, we examined biocompatibility and cell growth on the collagen fibers. Fibroblast cells proliferated during the experiment that lasted for 32 days and showed aligned configuration with the collagen fiber orientation. The novelty of this study is manifested in the use of naturally derived coral-based long collagen fibers for the development of a new class of tissue-engineered grafts. The proposed novel biocomposite graft demonstrated both mechanical and biological compatibility and can be further developed for small-diameter blood-vessel replacement.


Subject(s)
Anthozoa , Vascular Grafting , Animals , Biomimetics , Blood Vessel Prosthesis , Collagen , Tissue Engineering
18.
Curr Oncol ; 28(2): 1020-1033, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33669102

ABSTRACT

(1) Background: Preventive measures taken in response to the coronavirus disease 2019 (COVID-19) pandemic have adversely affected an entire range of cancer-related medical activities. The reallocation of medical resources, staff, and ambulatory services, as well as critical shortages in pharmaceutical and medical supplies have compelled healthcare professionals to prioritize patients with cancer to treatment and screening services based on a set of classification criteria in cancer-related guidelines. Cancer patients themselves have been affected on multiple levels, and addressing their concerns poses another challenge to the oncology community. (2) Methods: We conducted a Canada-wide search of cancer-related clinical practice guidelines on the management and prioritization of individuals into treatment and screening services. We also outlined the resources provided by Canadian cancer charities and patient advocacy groups to provide cancer patients, or potential cancer patients, with useful information and valuable support resources. (3) Results: The identified provincial guidelines emphasized cancer care (i.e., treatment) more than cancer control (i.e., screening). For cancer-related resources, a clear significance was placed on knowledge & awareness and supportive resources, mainly relating to mental health. (4) Conclusion: We provided a guidance document outlining cancer-related guidelines and resources that are available to healthcare providers and patients across Canada during the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Health Resources , Neoplasms/therapy , Practice Guidelines as Topic , SARS-CoV-2 , Canada , Humans
19.
Tissue Eng Part A ; 27(3-4): 187-200, 2021 02.
Article in English | MEDLINE | ID: mdl-32524890

ABSTRACT

There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.


Subject(s)
Anthozoa , Tissue Scaffolds , Animals , Biocompatible Materials , Collagen , Tissue Engineering
20.
Ann Biomed Eng ; 49(1): 441-454, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32705423

ABSTRACT

The aortic valve (AV) is located between the left ventricle and the aorta and responsible for maintaining an outward unidirectional flow. Many AV hemodynamic and structural aspects of have been extensively studied, however, more sophisticated models are needed to better understand the AV biomechanical behavior. This study deals with integrating a new parametric AV structural model with the electro-mechanical Living Heart Human Model® (LHHM). The LHHM is a finite element model simulating human heart capable of realistic electro-mechanical simulations. Different geometric metrics of AV have been examined. New integrated structural AV model within the LHHM better predict local stresses during the cardiac cycle due to the realistic boundary condition derived from the LHHM. It was found that ellipticity index (EI), calculated as the ratio between the maximal (Max) and minimal (Min) aortic annulus (AA) diameters, well correlates with measured clinical data obtained from patients undergoing computed tomography (CT) while the annular perimeter (Perim) matches the same trend. This increases the confidence in the predicted kinematic behavior, leaflets coaptation, and the overall stresses. From the clinical aspect, the new proposed coupled and integrated AV modeling can serve as a platform for design and implementation of pre-transcatheter aortic valve replacement (TAVR) procedures.


Subject(s)
Heart/physiology , Models, Cardiovascular , Adult , Biomechanical Phenomena , Computed Tomography Angiography , Computer Simulation , Finite Element Analysis , Heart/diagnostic imaging , Humans , Male , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...