Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(3): e0299378, 2024.
Article in English | MEDLINE | ID: mdl-38466698

ABSTRACT

Antibiotics are the drugs that are used for the management of microbial diseases. However, these conventional synthetic drugs can harmfully affect the human health. Since phytochemicals are extracted from natural sources and, are hence relatively safer for human health, they are the enticing alternatives in this regard. Cinnamon is also one of those plants which is being employed as herbal medication for centuries against certain microbial infections due its significant therapeutic effectiveness. A well-known pathogenic bacterium called H. pylori causes a wide range of illnesses in human body. This pathogen's pathogenicity is determined by certain virulent proteins. In this study, some of such proteins, which included virB4, virB8, and virB9 were selected to evaluate the therapeutic efficiency of cinnamon compounds. These proteins were identified in different isolates of H. pylori. The structural modelling of all these proteins were performed initially in order to proceed them for molecular docking analysis. While, the docking studies illustrated that one of the cinnamon compounds, cinnamyl acetate, showed significant binding interactions with virB4 and virB9. However, benzyl benzoate which is another cinnamon compound, docked well with virB8. Afterwards, the MD simulations were incorporated to explore the interaction motions and structural stability of all the docked complexes. In this regard, the resultant maps of Bfactor, eigenvalues and elastic network model, among other factors ensured the structural stabilities of all the respective complexes. After these crucial estimations, benzyl benzoate and cinnamyl acetate underwent the ADMET investigation to assess their pharmacokinetic characteristics. SwissADME and ADMETLab 2.0 server were employed for this investigation. The compiled findings these servers revealed that both, benzyl benzoate and cinnamyl acetate, exhibited a significant level of pharmacokinetic and drug-likeness conformity.


Subject(s)
Benzoates , Cinnamates , Helicobacter pylori , Humans , Molecular Docking Simulation , Cinnamomum zeylanicum , Molecular Dynamics Simulation
2.
Heliyon ; 10(6): e27657, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510042

ABSTRACT

Lumpy skin disease virus (LSDV) belongs to Poxviridae family. This virus possesses various proteins which impart potential functions to it including assembly of newly synthesized viruses in the replication cycle and forming their structure. LSDV132 protein is also one of such proteins. Its key characteristics were unknown because, no any relevant study was reported about it. This study aimed to investigate its characteristic features and essential functions using several bioinformatics techniques. These analyses included physiochemical characterization and exploring the crucial functional and structural perspectives. Upon analysis of the physiochemical properties, the instability index was computed to be 30.89% which proposed LSDV132 protein to be a stable protein. Afterwards, the phosphorylation sites were explored. Several sites were found in this regard which led to the hypothesis that it might be involved in the regulation of apoptosis and cell signaling, among other cellular processes. Furthermore, the KEGG analysis and the analysis of protein family classification confirmed that the LSDV132 protein possessed Poxvirus-BCL-2-like motifs, indicating that it might be responsible in modulating the apoptosis of host cells. This crucial finding suggested that the protein under study possessed BCL-2-like features. Proceeding this very important finding, the molecular docking analysis was performed. In this context, various viral BCL-2 inhibitors were retrieved from the ChEMBL database for docking purpose. The docking results revealed that pelcitoclax exhibited best docking scores i.e., -9.1841 kcal/mol, among all of the other docked complexes. This fact signified that this compound might serve as an inhibitor of LSDV132 protein.

3.
Plants (Basel) ; 12(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514259

ABSTRACT

Cotton leaf curl disease (CLCuD) is a significant constraint to the economies of Pakistan and India. The disease is caused by different begomoviruses (genus Begomovirus, family Geminiviridae) in association with a disease-specific betasatellite. However, another satellite-like molecule, alphasatellite, is occasionally found associated with this disease complex. A quantitative real-time PCR assay for the virus/satellite components causing CLCuD was used to investigate the performance of selected cotton varieties in the 2014-2015 National Coordinated Varietal Trials (NCVT) in Pakistan. The DNA levels of virus and satellites in cotton plants were determined for five cotton varieties across three geographic locations and compared with seed cotton yield (SCY) as a measure of the plant performance. The highest virus titer was detected in B-10 (0.972 ng·µg-1) from Vehari and the lowest in B-3 (0.006 ng·µg-1) from Faisalabad. Likewise, the highest alphasatellite titer was found in B-1 (0.055 ng·µg-1) from Vehari and the lowest in B-1 and B-2 (0.001 ng·µg-1) from Faisalabad. The highest betasatellite titer was found in B-23 (1.156 ng·µg-1) from Faisalabad and the lowest in B-12 (0.072 ng·µg-1) from Multan. Virus/satellite DNA levels, symptoms, and SCY were found to be highly variable between the varieties and between the locations. Nevertheless, statistical analysis of the results suggested that betasatellite DNA levels, rather than virus or alphasatellite DNA levels, were the important variable in plant performance, having an inverse relationship with SCY (-0.447). This quantitative assay will be useful in breeding programs for development of virus resistant plants and varietal trials, such as the NCVT, to select suitable varieties of cotton with mild (preferably no) symptoms and low (preferably no) virus/satellite. At present, no such molecular techniques are used in resistance breeding programs or varietal trials in Pakistan.

4.
Biomed Res Int ; 2023: 8150909, 2023.
Article in English | MEDLINE | ID: mdl-36691472

ABSTRACT

The global demand for good quality food is going to be increased gradually. Mushrooms are broadly used as healthy nutritious meals. The nutritional values of extracts from four distinct Pleurotus species-Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus sapidus, and Pleurotus columbinus-were determined in the current study. Firstly, proximate analysis of selected Pleurotus species was performed followed by the Bradford assay to analyze the protein spectrophotometrically; high-performance liquid chromatography (HPLC) was performed for sugar determination while GC-MS was done to determine fatty acids on organic extracts of selected mushrooms. Descriptive statistics were used to calculate the percentages while significance was determined by SPSS statistics. The results depicted that fat, protein, ash, fiber, energy contents, and total carbohydrate were in the range of 0.64-2.02%, 16.07-25.15%, 2.1-9.14%, 6.21-54.12%, 342.20-394.30 kcal/100 g, and 65.66-82.47%, respectively. The protein's maximum concentration was observed in P. ostreatus followed by P. columbinus>P. sajor-caju>P. sapidus, sequentially. Various sugars may or may not be present in selected Pleurotus spps. Among the fatty acids, the prevalence of UFA was more than that of saturated fatty acids among all selected mushrooms. From this study, it is concluded that all four Pleurotus spps. have excellent nutritional composition and can be used as valuable food and a great source of biochemical compounds.


Subject(s)
Pleurotus , Pleurotus/chemistry , Carbohydrates , Nutritive Value , Food , Fatty Acids
5.
Sci Rep ; 12(1): 18621, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329173

ABSTRACT

Enhancement of sugar contents and yielding healthful sugar products from sugarcane demand high profile scientific strategies. Previous efforts to foster manipulation in metabolic pathways or triggering sugar production through combating abiotic stresses fail to yield high sugar recovery in Saccharum officinarum L. Novel sucrose isomers trehalulose (TH) and isomaltulose (IM) are naturally manufactured in microbial sources. In pursuance of novel scientific methodology, codon optimized sucrose isomerase gene, Trehalulose synthase gene II(CEMB-SIG2) cloned under dual combined stem specific constitutive promoters in pCAMBIA1301 expression vector integrated with Vacuole targeted signal peptide (VTS) to concentrate gene product into the vacuole. The resultant mRNA expression obtained by Real Time PCR validated extremely increased transgene expression in sugarcane culms than leaf tissues. Overall sugar estimation from transgenic sugarcane lines was executed through refractometer. HPLC based quantifications of Trehalulose (TH) alongside different internodes of transgenic sugarcane confirmed the enhancement of boosted sugar concentrations in mature sugarcane culms. Trehalulose synthase gene II receptive sugarcane lines indicated the unprecedented impressions of duly combined constitutive stem regulated promoters. Transgenic sugarcane lines produce highest sugar recovery percentages, 14.9% as compared to control lines (8.5%). The increased sugar recovery percentage in transgenic sugarcane validated the utmost performance and expression of ThSyGII gene .High Profile Liquid chromatography based sugar contents estimation of Trehalulose (TH) and Isomaltulose (IM) yielded unprecedented improvement in the whole sugar recovery percentage as compared to control lines.⁠.


Subject(s)
Saccharum , Saccharum/genetics , Saccharum/metabolism , Sugars/metabolism , Sucrose/metabolism , Genetic Engineering , Stress, Physiological , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
6.
Front Chem ; 10: 836678, 2022.
Article in English | MEDLINE | ID: mdl-35592306

ABSTRACT

Co-encapsulated econazole nitrate-triamcinolone acetonide loaded biocompatible, physically stable, and non-irritating mesoporous silica nanoparticles (EN-TA-loaded MSNs) were prepared and optimized by using a central composite rotatable design (CCRD) for providing better therapeutic efficacy against commonly prevailed resistant fungal infections. These drugs loaded MSNs can significantly overcome the deficiencies and problems like short duration of action, requirement of frequent administration, erythema, and burning sensation and irritation associated with conventional drug delivery systems. The stability of optimized drugs loaded MSNs prepared with 100 gm of oil at pH 5.6 with a stirring time of 2 h was confirmed from a zeta potential value of -25 mV. The remarkable compatibility of formulation ingredients was depicted by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) spectra while scanning electron microscopy (SEM) and size analysis represented a very fine size distribution of nanoparticles ranging from 450-600 nm. The CCRD clearly predicted that the optimized parameters of drugs loaded MSNs have better values of percentage yield (85%), EN release (68%), and TA release (70%). Compared to pure drugs, the decreased cytotoxicity of EN-TA-loaded MSNs was quite evident because they showed a cell survival rate of 90%, while in the case of pure drugs, the survival rate was 85%. During in vivo antifungal testing against Candida albicans performed on three different groups, each consisting of six rabbits, the EN-TA-loaded MSNs were relatively superior in eradicating the fungal infection as a single animal exhibited a positive culture test. Rapid recovery of fungal infection and a better therapeutic effect of EN-TA-loaded MSN were quite evident in wound healing and histopathology studies. Likewise, on the 14th day, a larger inhibitory zone was measured for optimized nanoparticles (15.90 mm) compared to the suspension of pure drugs (13.90 mm). In skin irritation studies, MSNs did not show a grade of erythema compared to pure drugs, which showed a four-fold grade of erythema. As a result, MSNs loaded with combination therapy seem to have the potential of improving patient compliance and tolerability by providing enhanced synergistic antifungal effectiveness at a reduced dose with accelerated wound healing and reduced toxicity of therapeutics.

7.
Bol. latinoam. Caribe plantas med. aromát ; 21(3): 352-364, mayo 2022. ilus, tab
Article in English | LILACS | ID: biblio-1396915

ABSTRACT

The antioxidant activity and the inhibitory potential of α-amylase of lyophilized hydroethanolic extracts of Conocarpus erectus leaves obtained by ultrasonication were determined. The most potent extract was subjected to ultra-high performance liquid chromatography system equipped with mass spectrometer for metabolite identification. The identified metabolites were docked in α-glucosidase to assess their binding mode. The results revealed that 60% ethanolic extract exhibited highest ferric reducing antioxidant power (4.08 ± 0.187 mg TE/g DE) and α-amylase inhibition (IC50 58.20 ± 1.25 µg/mL. The metabolites like ellagic acid, 3-O-methyl ellagic acid, ferujol, 5, 2 ́-dihydroxy-6,7,8-trimethyl flavone and kaempferol glucoside were identified in the extract and subjected to molecular docking studies regarding α-amylase inhibition. The comparison of binding affinities revealed 3-O-methyl ellagic acid as most effective inhibitor of α-amylase with binding energy of -14.5911 kcal/mol comparable to that of acarbose (-15.7815 kcal/mol). The secondary metabolites identified in the study may be extended further for functional food development with antidiabetic properties.


Se determinó la actividad antioxidante y el potencial inhibidor de la α-amilasa de extractos hidroetanólicos liofilizados de hojas de Conocarpus erectus obtenidos por ultrasónicación. El extracto más potente se sometió a un sistema de cromatografía líquida de ultra alto rendimiento equipado con un espectrómetro de masas para la identificación de metabolitos. Los metabolitos identificados se acoplaron en α-glucosidasa para evaluar su modo de unión. Los resultados revelaron que el extracto etanólico al 60% exhibió el mayor poder antioxidante reductor férrico (4.08 ± 0.187 mg TE/g DE) e inhibición de la α-amilasa (IC50 58.20 ± 1.25 µg/mL. Los metabolitos como el ácido elágico, 3-O-metil elágico ácido, ferujol, 5, 2 ́-dihidroxi-6,7,8-trimetil flavona y kaempferol glucósido se identificaron en el extracto y se sometieron a estudios de acoplamiento molecular con respecto a la inhibición de la α-amilasa. La comparación de las afinidades de unión reveló 3-O-metil El ácido elágico como inhibidor más eficaz de la α-amilasa con una energía de unión de -14,5911 kcal/mol comparable a la de la acarbosa (-15,7815 kcal/mol). Los metabolitos secundarios identificados en el estudio pueden ampliarse aún más para el desarrollo funcional de alimentos con propiedades antidiabéticas.


Subject(s)
Plant Extracts/chemistry , alpha-Amylases/antagonists & inhibitors , Myrtales/chemistry , Antioxidants/chemistry , Benzopyrans/analysis , In Vitro Techniques , Plant Extracts/pharmacology , Plant Leaves/chemistry , Molecular Docking Simulation , Antioxidants/pharmacology
8.
Bull Emerg Trauma ; 10(1): 21-26, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35155693

ABSTRACT

OBJECTIVE: To compare the characteristics of the emergency medical services (EMS) brought COVID-19 patients versus self-referred walk-in patients. METHODS: This was a Cross-sectional study of COVID-19 infected cases in Jahrom, south of Iran. Age, sex, the symptoms of beginning days' passing, respiratory distress, PO2 at arrival, admission length and in-hospital death were retrieved for confirming COVID-19 cases in the whole 2020 year. Respiratory distress was considered as the sign that agitates the patient to call EMS care. Survival analysis was used to evaluate the possible difference of the hospitalization outcome in EMS brought or Self-referred walk-in (SRW) patients. RESULTS: There was 704 (27.1%) registries patients transfer to the hospital by EMS and 1895 (72.9%) cases with SRW referred to the hospital. The survival distributions for the EMS group were statistically significant and lower than SRW group (p<0.05). Despite the SRW patients, respiratory distress was associated with lower survival in EMS group (p<0.05). Days passing the symptom's beginning was significantly different between EMS group (6.1±5.3 days) and SRW group (6.9±4.6 days). Cox regression showed higher mortality rate in patients higher than 75 years old in both groups (p<0.05). Higher PO2 at arrival was associated with lower mortality rate of Hazard Ratio of 0.959 (p<0.001) and 0.903 (p<0.001) in EMS and SRW groups, respectively. The history of heart disease and hypertension were associated with 1.011 and 1.088 times more than mortality risk in EMS group; while cancer history was associated with 2.74 times more of mortality risk in SRW group. CONCLUSION: It seems that severe acute respiratory syndrome occurs soon in some patients that lead to the need for an ambulance to transfer the patient to the hospital. Therefore, EMS transfer patients should be considered for more risk of severe COVID-19; considering comorbidities of heart disease and hypertension as red flags.

9.
J Ethnopharmacol ; 287: 114919, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-34995693

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Syzygium cumini (L.) Skeels has been extensively used in the ancient medical system of Pakistan, India, Bangladesh, and Sri Lanka to combat diabetes, inflammation, and renal disorders. These health-promoting aspects of S. cumini are related to bioactive metabolites such as phenolic acids, anthocyanins, tannins, and flavonoids. AIM OF THE STUDY: Earlier to this study, we have reported S. cumini extracts as potential sources of bioactive compounds bearing antioxidant and anti-inflammatory properties. However, prior further suggesting S. cumini fruit extracts for consumption against inflammatory disorders, it was mandatory to validate the claim and explore toxicity of the extracts. This study aims to determine the in vivo anti-nociceptive, anti-inflammatory, acute, and subacute toxicity properties of S. cumini crude extracts, followed by identifying and quantifying bioactive metabolites. MATERIAL AND METHODS: In the present study, the anti-nociceptive and anti-inflammatory potential of S. cumini sequential crude extracts were evaluated using formalin and glutamate-induced paw licking method in mice. The acute and sub-acute toxicity assessment of active extract was performed by oral administration in rats. An acute toxicity trial was performed with two different doses, i.e., 2000 mg/kg and 3000 mg/kg for consecutive 14 days, whereas a sub-acute toxicity study was conducted at doses of 750 mg/kg and 1500 mg/kg for the next 28 days. Identification of bioactive compounds was performed using HPLC, and at the end, in silico docking calculations of identified compounds were performed. RESULTS: The 100% methanolic extract (SCME) protected the mice from painful stimulation of formalin and glutamate in a dose-dependent manner with the maximum effect of 49% and 67% at 200 mg/kg, respectively, followed by moderate and non-influential effects of 50% methanolic extract and dichloromethane (DCM) extracts when compared to control, i.e., normal saline. The results of acute toxicity recorded LD50 of SCME over 3000 mg/kg, and no antagonistic effects were recorded during the subacute study when SCME dispensed at the rate of 750 mg/kg and 1500 mg/kg. SCME was found to induce no adverse effects to kidney, heart, liver, spleen, and paired lungs examined by hematological, serum biochemical, histological analysis. HPLC analysis of S. cumini 100% methanolic extracts revealed the presence of delphinidin 3-glucoside, peonidin-3,5-diglucoside, scopoletin, and umbelliferone at the concentration of 127.4, 2104, 31.3, 10.4 µg/g whereas in 50% methanolic extract, the quinic acid, catechin, and myricetin were present at the concentration of 54.9, 63.7, 12.3 µg/g, respectively. Umbelliferone and scopoletin are newly reported compounds in the present study. In silico docking calculations of these compounds indicated the potential of anti-nociceptive and anti-inflammatory activities. CONCLUSIONS: These findings validate that S. cumini fruit extracts are a rich source of bioactive compounds that needs to be considered to enhance biological activities with lesser side effects.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Syzygium/chemistry , Analgesics/administration & dosage , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Chromatography, High Pressure Liquid , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Male , Mice , Molecular Docking Simulation , Plant Extracts/administration & dosage , Plant Extracts/toxicity , Rats , Rats, Sprague-Dawley , Toxicity Tests, Acute , Toxicity Tests, Subacute
10.
Molecules ; 26(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34641627

ABSTRACT

Peganum harmala (P. harmala) belongs to the family Zygophyllaceae, and is utilized in the traditional medicinal systems of Pakistan, China, Morocco, Algeria, and Spain to treat several chronic health disorders. The aim of the present study was to identify the chemical constituents and to evaluate the antioxidant, anti-inflammatory, and toxicity effects of P. harmala extracts both in vitro and in vivo. Sequential crude extracts including 100% dichloromethane, 100% methanol, and 70% aqueous methanol were obtained and their antioxidant and anti-inflammatory effects evaluated both in vitro and in vivo. The anti-inflammatory effect of the extract was investigated using the carrageenan-induced paw edema method in mice, whereas the toxicity of the most active extract was evaluated using an acute and subacute toxicity rat model. In addition, we have used the bioassay-guided approach to obtain potent fractions, using solvent-solvent partitioning and reversed phase high performance liquid chromatography from active crude extracts; identification and quantification of compounds from the active fractions was achieved using electrospray ionization mass spectrometry and high performance liquid chromatography techniques. Results revealed that the 100% methanol extract of P. harmala exhibits significant in vitro antioxidant activity in DPPH assay with an IC50 of 49 µg/mL as compared to the standard quercetin with an IC50 of 25.4 µg/mL. The same extract exhibited 63.0% inhibition against serum albumin denaturation as compared to 97% inhibition by the standard diclofenac sodium in an in vitro anti-inflammatory assay, and in vivo anti-inflammatory against carrageenan-induced paw edema (75.14% inhibition) as compared to 86.1% inhibition caused by the standard indomethacin. Furthermore, this extract was not toxic during a 14 day trial of acute toxicity when given at a dose of 3 g/kg, indicating that the lethal dose (LD50) of P. harmala methanol extract was greater than 3 g/kg. P. harmala methanolic fraction 2 obtained using bioassay-guided fractionation showed the presence of quinic acid, peganine, harmol, harmaline, and harmine, confirmed by electrospray ionization mass spectrometry and quantified using external standards on high performance liquid chromatography. Taken all together, the current investigation further confirms the antioxidant, anti-inflammatory, and safety aspects of P. harmala, which justifies its use in folk medicine.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Carrageenan/adverse effects , Edema/drug therapy , Peganum/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Disease Models, Animal , Edema/chemically induced , Indomethacin/pharmacology , Lethal Dose 50 , Mice , Plant Extracts/chemistry , Quercetin/pharmacology , Rats , Toxicity Tests, Acute , Toxicity Tests, Subacute
11.
Iran J Biotechnol ; 15(4): 260-267, 2017.
Article in English | MEDLINE | ID: mdl-29845078

ABSTRACT

Background: Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives: pBINTRA6 vector was modifi ed by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1) and the two nonstructural proteins of TRV2(RNA2). Materials and Methods: SCMV construct was inoculated into 3-4 weeks Nicotiana benthamiana plant leaves either by using a needleless syringe or applying pricking with a toothpick. Results: The construct (SCMV-RNA2) successfully induced post-transcriptional gene silencing (PTGS) of the target genes GFP and ChlI through agroinoculation proving that SCMV is a substitute of the RNA1, which plays a pivotal role in the systemic gene silencing. 2-3-weeks of post inoculation, target genes' silencing was observed in the newly developed noninoculated leaves. Conclusions: The newly developed construct expresses the knocked down of the endogenous as well as exogenous genes and only four weeks are required for the transient expression of the gene silencing based on SCMV-VIGS system.

SELECTION OF CITATIONS
SEARCH DETAIL
...