Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 5(4): e01552, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31183424

ABSTRACT

Alzheimer's disease is an irreversible and progressive brain disease that can cause problems with memory and thinking skills. It is characterized by loss of cognitive ability and severe behavioral abnormalities, and could lead to death. Cholinesterases (ChEs) play a crucial role in the control of cholinergic transmission, and subsequently, the acetylcholine level in the brain is upgraded by inhibition of ChEs. Coumarins have been shown to display potential cholinesterase inhibitory action, where the aromatic moiety has led to the design of new candidates that could inhibit Aß aggregation. Accordingly, the present work is an in vitro activity, along with docking and molecular dynamics (MD) simulation studies of synthesized coumarin derivatives, to explore the plausible binding mode of these compounds inside the cholinesterase enzymes. For this purpose, a series of previously prepared N1-(coumarin-7-yl) derivatives were screened in vitro for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. The assayed compounds exhibited moderate inhibitory activity against AChE, with IC50 values ranging from 42.5 ± 2.68 to 442 ± 3.30 µM. On the other hand, the studied compounds showed remarkable activity against BChE with IC50 values ranging from 2.0 ± 1.4 nM to 442 ± 3.30 µM. In order to better understand the ligand binding site interaction of compounds and the stability of protein-ligand complexes, a molecular docking with molecular dynamics simulation of 5000 ps in an explicit solvent system was carried out for both cholinesterases. We concluded that the tested coumarin derivatives are potential candidates as leads for potent and efficacious ChEs inhibitors.

2.
Sci Rep ; 9(1): 4148, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858403

ABSTRACT

Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 is comprised of 91 amino acids, with eight conserved cysteine residues. The amino acid sequence based predicted three dimensional (3D) structure is composed of four α-helices stabilized by four disulfide bonds, and a long C-terminal tail. The predicted model was verified by using different computational tools; i.e. ERRAT, verify 3D web server, and PROCHECK. The docking of ajwain nsLTP1 with ligands; myristic acid (MYR), and oleic acid (OLE) was performed, and molecular dynamics (MD) simulation was used to validate the docking results. The findings suggested that amino acids; Leu11, Leu12, Ala55, Ala56, Val15, Tyr59, and Leu62 are pivotal for the binding of lipid molecules with ajwain nsLTP1.


Subject(s)
Apiaceae/enzymology , Carrier Proteins/chemistry , Plant Proteins/chemistry , Binding Sites , Carrier Proteins/metabolism , Molecular Docking Simulation , Myristic Acid/chemistry , Myristic Acid/metabolism , Oleic Acid/chemistry , Oleic Acid/metabolism , Plant Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Seeds/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...