Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36673074

ABSTRACT

Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of diabetes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightforward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI, utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors and patient outcomes to characterise the features with the best ability to detect DSPN severity. A nomogram based on multivariable logistic regression was designed, developed and validated. The extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN, namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception (L), presence of callus, deformities and fissure. The nomogram's area under the curve (AUC) was 0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was predicted from the nomogram and a DSPN severity grading system for MNSI was created using the probability score. An independent dataset was used to validate the model's performance. The patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe, with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%, respectively. We provide an easy-to-use, straightforward and reproducible approach to determine prognosis in patients with DSPN.

2.
Comput Intell Neurosci ; 2022: 9690940, 2022.
Article in English | MEDLINE | ID: mdl-35510061

ABSTRACT

Background: Diabetic sensorimotor polyneuropathy (DSPN) is a major form of complication that arises in long-term diabetic patients. Even though the application of machine learning (ML) in disease diagnosis is very common and well-established in the field of research, its application in DSPN diagnosis using nerve conduction studies (NCS), is very limited in the existing literature. Method: In this study, the NCS data were collected from the Diabetes Control and Complications Trial (DCCT) and its follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. The NCS variables are median motor velocity (m/sec), median motor amplitude (mV), median motor F-wave (msec), median sensory velocity (m/sec), median sensory amplitude (µV), Peroneal Motor Velocity (m/sec), peroneal motor amplitude (mv), peroneal motor F-wave (msec), sural sensory velocity (m/sec), and sural sensory amplitude (µV). Three different feature ranking techniques were used to analyze the performance of eight different conventional classifiers. Results: The ensemble classifier outperformed other classifiers for the NCS data ranked when all the NCS features were used and provided an accuracy of 93.40%, sensitivity of 91.77%, and specificity of 98.44%. The random forest model exhibited the second-best performance using all the ten features with an accuracy of 93.26%, sensitivity of 91.95%, and specificity of 98.95%. Both ensemble and random forest showed the kappa value 0.82, which indicates that the models are in good agreement with the data and the variables used and are accurate to identify DSPN using these ML models. Conclusion: This study suggests that the ensemble classifier using all the ten NCS variables can predict the DSPN severity which can enhance the management of DSPN patients.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Polyneuropathies , Algorithms , Diabetic Neuropathies/diagnosis , Humans , Machine Learning , Neural Conduction/physiology , Polyneuropathies/diagnosis
3.
Article in English | MEDLINE | ID: mdl-26737713

ABSTRACT

Electromyography (EMG) is one of the indirect tools in indexing fatigue. Fatigue can be detected when there are changes on amplitude and frequency. However, various outcomes from literature make researchers conclude that EMG is not a reliable tool to measure fatigue. This paper investigates EMG behavior of biceps femoris in median frequency and mean absolute value during five days of Bruce Protocol treadmill test. Before that, surface EMG signals are filtered using band pass filter cut-off at 20-500Hz and are de-noised using db45 1-decimated wavelet transform. Five participants achieved more than 85% of their maximal heart rate during the running activity. The authors also consider other markers of fatigue such as performance, muscle soreness and lethargy as indicators to adaptation and maladaptation conditions. Result shows that turning points of median frequency and mean absolute value are very significant in indexing fatigue and indicators to adaptation of resistive training.


Subject(s)
Electromyography/methods , Exercise Test/methods , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Signal Processing, Computer-Assisted , Adult , Arm/physiology , Heart Rate , Humans , Leg/physiology , Running/physiology , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...